Spaces:
Runtime error
Runtime error
import gradio as gr | |
import torch | |
from llava.model.builder import load_pretrained_model | |
from llava.mm_utils import get_model_name_from_path, process_images, tokenizer_image_token | |
from llava.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN | |
from llava.conversation import conv_templates | |
import copy | |
from decord import VideoReader, cpu | |
import numpy as np | |
title = "# 📸 Instagram Reels Analiz Aracı" | |
description = """Bu araç, yüklenen Instagram Reels videolarını analiz eder ve içeriği özetler. | |
Video hakkında genel bir açıklama yapar ve klipte neler olup bittiğini adım adım anlatır.""" | |
def load_video(video_path, max_frames_num=64, fps=1): | |
vr = VideoReader(video_path, ctx=cpu(0)) | |
total_frame_num = len(vr) | |
frame_idx = list(range(0, total_frame_num, int(vr.get_avg_fps() / fps))) | |
if len(frame_idx) > max_frames_num: | |
frame_idx = np.linspace(0, total_frame_num - 1, max_frames_num, dtype=int).tolist() | |
video_frames = vr.get_batch(frame_idx).asnumpy() | |
return video_frames, len(frame_idx) | |
# Model yükleme | |
pretrained = "lmms-lab/LLaVA-Video-7B-Qwen2" | |
model_name = "llava_qwen" | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
print("Model yükleniyor...") | |
tokenizer, model, image_processor, max_length = load_pretrained_model(pretrained, None, model_name, torch_dtype="bfloat16", device_map="auto") | |
model.eval() | |
print("Model başarıyla yüklendi!") | |
def analyze_reel(video_path): | |
video_frames, frame_count = load_video(video_path) | |
video = image_processor.preprocess(video_frames, return_tensors="pt")["pixel_values"].to(device).bfloat16() | |
prompt = f"{DEFAULT_IMAGE_TOKEN}Bu Instagram Reels videosunu analiz et. Önce videonun genel içeriğini özetle, ardından klipte neler olup bittiğini adım adım açıkla. Video {frame_count} kareye bölünmüştür." | |
conv = copy.deepcopy(conv_templates["qwen_1_5"]) | |
conv.append_message(conv.roles[0], prompt) | |
conv.append_message(conv.roles[1], None) | |
prompt = conv.get_prompt() | |
input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt").unsqueeze(0).to(device) | |
with torch.no_grad(): | |
output = model.generate( | |
input_ids, | |
images=[video], | |
modalities=["video"], | |
do_sample=False, | |
temperature=0, | |
max_new_tokens=1024, | |
) | |
response = tokenizer.batch_decode(output, skip_special_tokens=True)[0].strip() | |
return response | |
def gradio_interface(video_file): | |
if video_file is None: | |
return "Lütfen bir video dosyası yükleyin." | |
return analyze_reel(video_file) | |
with gr.Blocks() as demo: | |
gr.Markdown(title) | |
gr.Markdown(description) | |
with gr.Row(): | |
video_input = gr.Video(label="Instagram Reels Videosu") | |
output = gr.Textbox(label="Analiz Sonucu", lines=10) | |
analyze_button = gr.Button("Reels'i Analiz Et") | |
analyze_button.click(fn=gradio_interface, inputs=video_input, outputs=output) | |
if __name__ == "__main__": | |
demo.launch(share=True) |