Spaces:
Runtime error
Runtime error
import gradio as gr | |
import torch | |
from llava.model.builder import load_pretrained_model | |
from llava.mm_utils import get_model_name_from_path, process_images, tokenizer_image_token | |
from llava.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN | |
from llava.conversation import conv_templates | |
import copy | |
from decord import VideoReader, cpu | |
import numpy as np | |
title = "# 🎥 Instagram Short Video Analyzer with LLaVA-Video" | |
description = """ | |
This application uses the LLaVA-Video-7B-Qwen2 model to analyze Instagram short videos. | |
Upload your Instagram short video and ask questions about its content! | |
""" | |
def load_video(video_path, max_frames_num=64, fps=1): | |
vr = VideoReader(video_path, ctx=cpu(0)) | |
total_frame_num = len(vr) | |
video_time = total_frame_num / vr.get_avg_fps() | |
fps = round(vr.get_avg_fps()/fps) | |
frame_idx = list(range(0, len(vr), fps)) | |
if len(frame_idx) > max_frames_num: | |
frame_idx = np.linspace(0, total_frame_num - 1, max_frames_num, dtype=int).tolist() | |
frame_time = [i/vr.get_avg_fps() for i in frame_idx] | |
frame_time = ",".join([f"{i:.2f}s" for i in frame_time]) | |
spare_frames = vr.get_batch(frame_idx).asnumpy() | |
return spare_frames, frame_time, video_time | |
# Load the model | |
pretrained = "lmms-lab/LLaVA-Video-7B-Qwen2" | |
model_name = "llava_qwen" | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
device_map = "auto" | |
print("Loading model...") | |
tokenizer, model, image_processor, max_length = load_pretrained_model(pretrained, None, model_name, torch_dtype="bfloat16", device_map=device_map) | |
model.eval() | |
print("Model loaded successfully!") | |
def process_instagram_short(video_path, question): | |
max_frames_num = 64 | |
video, frame_time, video_time = load_video(video_path, max_frames_num) | |
video = image_processor.preprocess(video, return_tensors="pt")["pixel_values"].to(device).bfloat16() | |
video = [video] | |
time_instruction = f"This is an Instagram short video lasting {video_time:.2f} seconds. {len(video[0])} frames were sampled at {frame_time}. Analyze this short video and answer the following question:" | |
full_question = DEFAULT_IMAGE_TOKEN + f"{time_instruction}\n{question}" | |
conv = copy.deepcopy(conv_templates["qwen_1_5"]) | |
conv.append_message(conv.roles[0], full_question) | |
conv.append_message(conv.roles[1], None) | |
prompt_question = conv.get_prompt() | |
input_ids = tokenizer_image_token(prompt_question, tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt").unsqueeze(0).to(device) | |
with torch.no_grad(): | |
output = model.generate( | |
input_ids, | |
images=video, | |
modalities=["video"], | |
do_sample=False, | |
temperature=0, | |
max_new_tokens=4096, | |
) | |
response = tokenizer.batch_decode(output, skip_special_tokens=True)[0].strip() | |
return response | |
def gradio_interface(video_file, question): | |
if video_file is None: | |
return "Please upload an Instagram short video." | |
response = process_instagram_short(video_file, question) | |
return response | |
with gr.Blocks() as demo: | |
gr.Markdown(title) | |
gr.Markdown(description) | |
with gr.Row(): | |
with gr.Column(): | |
video_input = gr.Video(label="Upload Instagram Short Video") | |
question_input = gr.Textbox(label="Ask a question about the video", placeholder="What's happening in this Instagram short?") | |
submit_button = gr.Button("Analyze Short Video") | |
output = gr.Textbox(label="Analysis Result") | |
submit_button.click( | |
fn=gradio_interface, | |
inputs=[video_input, question_input], | |
outputs=output | |
) | |
if __name__ == "__main__": | |
demo.launch(show_error=True) |