File size: 22,016 Bytes
a51a15b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
"""
Conversation thread management system for AgentPress.

This module provides comprehensive conversation management, including:
- Thread creation and persistence
- Message handling with support for text and images
- Tool registration and execution
- LLM interaction with streaming support
- Error handling and cleanup
- Context summarization to manage token limits
"""

import json
from typing import List, Dict, Any, Optional, Type, Union, AsyncGenerator, Literal
from services.llm import make_llm_api_call
from agentpress.tool import Tool
from agentpress.tool_registry import ToolRegistry
from agentpress.context_manager import ContextManager
from agentpress.response_processor import (
    ResponseProcessor,
    ProcessorConfig
)
from services.supabase import DBConnection
from utils.logger import logger

# Type alias for tool choice
ToolChoice = Literal["auto", "required", "none"]

class ThreadManager:
    """Manages conversation threads with LLM models and tool execution.

    Provides comprehensive conversation management, handling message threading,
    tool registration, and LLM interactions with support for both standard and
    XML-based tool execution patterns.
    """

    def __init__(self):
        """Initialize ThreadManager.

        """
        self.db = DBConnection()
        self.tool_registry = ToolRegistry()
        self.response_processor = ResponseProcessor(
            tool_registry=self.tool_registry,
            add_message_callback=self.add_message
        )
        self.context_manager = ContextManager()

    def add_tool(self, tool_class: Type[Tool], function_names: Optional[List[str]] = None, **kwargs):
        """Add a tool to the ThreadManager."""
        self.tool_registry.register_tool(tool_class, function_names, **kwargs)

    async def add_message(
        self,
        thread_id: str,
        type: str,
        content: Union[Dict[str, Any], List[Any], str],
        is_llm_message: bool = False,
        metadata: Optional[Dict[str, Any]] = None
    ):
        """Add a message to the thread in the database.

        Args:
            thread_id: The ID of the thread to add the message to.
            type: The type of the message (e.g., 'text', 'image_url', 'tool_call', 'tool', 'user', 'assistant').
            content: The content of the message. Can be a dictionary, list, or string.
                     It will be stored as JSONB in the database.
            is_llm_message: Flag indicating if the message originated from the LLM.
                            Defaults to False (user message).
            metadata: Optional dictionary for additional message metadata.
                      Defaults to None, stored as an empty JSONB object if None.
        """
        logger.debug(f"Adding message of type '{type}' to thread {thread_id}")
        client = await self.db.client

        # Prepare data for insertion
        data_to_insert = {
            'thread_id': thread_id,
            'type': type,
            'content': json.dumps(content) if isinstance(content, (dict, list)) else content,
            'is_llm_message': is_llm_message,
            'metadata': json.dumps(metadata or {}), # Ensure metadata is always a JSON object
        }

        try:
            # Add returning='representation' to get the inserted row data including the id
            result = await client.table('messages').insert(data_to_insert, returning='representation').execute()
            logger.info(f"Successfully added message to thread {thread_id}")

            if result.data and len(result.data) > 0 and isinstance(result.data[0], dict) and 'message_id' in result.data[0]:
                return result.data[0]
            else:
                logger.error(f"Insert operation failed or did not return expected data structure for thread {thread_id}. Result data: {result.data}")
                return None
        except Exception as e:
            logger.error(f"Failed to add message to thread {thread_id}: {str(e)}", exc_info=True)
            raise

    async def get_llm_messages(self, thread_id: str) -> List[Dict[str, Any]]:
        """Get all messages for a thread.

        This method uses the SQL function which handles context truncation
        by considering summary messages.

        Args:
            thread_id: The ID of the thread to get messages for.

        Returns:
            List of message objects.
        """
        logger.debug(f"Getting messages for thread {thread_id}")
        client = await self.db.client

        try:
            result = await client.rpc('get_llm_formatted_messages', {'p_thread_id': thread_id}).execute()

            # Parse the returned data which might be stringified JSON
            if not result.data:
                return []

            # Return properly parsed JSON objects
            messages = []
            for item in result.data:
                if isinstance(item, str):
                    try:
                        parsed_item = json.loads(item)
                        messages.append(parsed_item)
                    except json.JSONDecodeError:
                        logger.error(f"Failed to parse message: {item}")
                else:
                    messages.append(item)

            # Ensure tool_calls have properly formatted function arguments
            for message in messages:
                if message.get('tool_calls'):
                    for tool_call in message['tool_calls']:
                        if isinstance(tool_call, dict) and 'function' in tool_call:
                            # Ensure function.arguments is a string
                            if 'arguments' in tool_call['function'] and not isinstance(tool_call['function']['arguments'], str):
                                tool_call['function']['arguments'] = json.dumps(tool_call['function']['arguments'])

            return messages

        except Exception as e:
            logger.error(f"Failed to get messages for thread {thread_id}: {str(e)}", exc_info=True)
            return []

    async def run_thread(
        self,
        thread_id: str,
        system_prompt: Dict[str, Any],
        stream: bool = True,
        temporary_message: Optional[Dict[str, Any]] = None,
        llm_model: str = "gpt-4o",
        llm_temperature: float = 0,
        llm_max_tokens: Optional[int] = None,
        processor_config: Optional[ProcessorConfig] = None,
        tool_choice: ToolChoice = "auto",
        native_max_auto_continues: int = 25,
        max_xml_tool_calls: int = 0,
        include_xml_examples: bool = False,
        enable_thinking: Optional[bool] = False,
        reasoning_effort: Optional[str] = 'low',
        enable_context_manager: bool = True
    ) -> Union[Dict[str, Any], AsyncGenerator]:
        """Run a conversation thread with LLM integration and tool execution.

        Args:
            thread_id: The ID of the thread to run
            system_prompt: System message to set the assistant's behavior
            stream: Use streaming API for the LLM response
            temporary_message: Optional temporary user message for this run only
            llm_model: The name of the LLM model to use
            llm_temperature: Temperature parameter for response randomness (0-1)
            llm_max_tokens: Maximum tokens in the LLM response
            processor_config: Configuration for the response processor
            tool_choice: Tool choice preference ("auto", "required", "none")
            native_max_auto_continues: Maximum number of automatic continuations when
                                      finish_reason="tool_calls" (0 disables auto-continue)
            max_xml_tool_calls: Maximum number of XML tool calls to allow (0 = no limit)
            include_xml_examples: Whether to include XML tool examples in the system prompt
            enable_thinking: Whether to enable thinking before making a decision
            reasoning_effort: The effort level for reasoning
            enable_context_manager: Whether to enable automatic context summarization.

        Returns:
            An async generator yielding response chunks or error dict
        """

        logger.info(f"Starting thread execution for thread {thread_id}")
        logger.info(f"Using model: {llm_model}")
        # Log parameters
        logger.info(f"Parameters: model={llm_model}, temperature={llm_temperature}, max_tokens={llm_max_tokens}")
        logger.info(f"Auto-continue: max={native_max_auto_continues}, XML tool limit={max_xml_tool_calls}")

        # Log model info
        logger.info(f"🤖 Thread {thread_id}: Using model {llm_model}")

        # Apply max_xml_tool_calls if specified and not already set in config
        if max_xml_tool_calls > 0 and not processor_config.max_xml_tool_calls:
            processor_config.max_xml_tool_calls = max_xml_tool_calls

        # Create a working copy of the system prompt to potentially modify
        working_system_prompt = system_prompt.copy()

        # Add XML examples to system prompt if requested, do this only ONCE before the loop
        if include_xml_examples and processor_config.xml_tool_calling:
            xml_examples = self.tool_registry.get_xml_examples()
            if xml_examples:
                examples_content = """
--- XML TOOL CALLING ---

In this environment you have access to a set of tools you can use to answer the user's question. The tools are specified in XML format.
Format your tool calls using the specified XML tags. Place parameters marked as 'attribute' within the opening tag (e.g., `<tag attribute='value'>`). Place parameters marked as 'content' between the opening and closing tags. Place parameters marked as 'element' within their own child tags (e.g., `<tag><element>value</element></tag>`). Refer to the examples provided below for the exact structure of each tool.
String and scalar parameters should be specified as attributes, while content goes between tags.
Note that spaces for string values are not stripped. The output is parsed with regular expressions.

Here are the XML tools available with examples:
"""
                for tag_name, example in xml_examples.items():
                    examples_content += f"<{tag_name}> Example: {example}\\n"

                # # Save examples content to a file
                # try:
                #     with open('xml_examples.txt', 'w') as f:
                #         f.write(examples_content)
                #     logger.debug("Saved XML examples to xml_examples.txt")
                # except Exception as e:
                #     logger.error(f"Failed to save XML examples to file: {e}")

                system_content = working_system_prompt.get('content')

                if isinstance(system_content, str):
                    working_system_prompt['content'] += examples_content
                    logger.debug("Appended XML examples to string system prompt content.")
                elif isinstance(system_content, list):
                    appended = False
                    for item in working_system_prompt['content']: # Modify the copy
                        if isinstance(item, dict) and item.get('type') == 'text' and 'text' in item:
                            item['text'] += examples_content
                            logger.debug("Appended XML examples to the first text block in list system prompt content.")
                            appended = True
                            break
                    if not appended:
                        logger.warning("System prompt content is a list but no text block found to append XML examples.")
                else:
                    logger.warning(f"System prompt content is of unexpected type ({type(system_content)}), cannot add XML examples.")
        # Control whether we need to auto-continue due to tool_calls finish reason
        auto_continue = True
        auto_continue_count = 0

        # Define inner function to handle a single run
        async def _run_once(temp_msg=None):
            try:
                # Ensure processor_config is available in this scope
                nonlocal processor_config
                # Note: processor_config is now guaranteed to exist due to check above

                # 1. Get messages from thread for LLM call
                messages = await self.get_llm_messages(thread_id)

                # 2. Check token count before proceeding
                token_count = 0
                try:
                    from litellm import token_counter
                    # Use the potentially modified working_system_prompt for token counting
                    token_count = token_counter(model=llm_model, messages=[working_system_prompt] + messages)
                    token_threshold = self.context_manager.token_threshold
                    logger.info(f"Thread {thread_id} token count: {token_count}/{token_threshold} ({(token_count/token_threshold)*100:.1f}%)")

                    # if token_count >= token_threshold and enable_context_manager:
                    #     logger.info(f"Thread token count ({token_count}) exceeds threshold ({token_threshold}), summarizing...")
                    #     summarized = await self.context_manager.check_and_summarize_if_needed(
                    #         thread_id=thread_id,
                    #         add_message_callback=self.add_message,
                    #         model=llm_model,
                    #         force=True
                    #     )
                    #     if summarized:
                    #         logger.info("Summarization complete, fetching updated messages with summary")
                    #         messages = await self.get_llm_messages(thread_id)
                    #         # Recount tokens after summarization, using the modified prompt
                    #         new_token_count = token_counter(model=llm_model, messages=[working_system_prompt] + messages)
                    #         logger.info(f"After summarization: token count reduced from {token_count} to {new_token_count}")
                    #     else:
                    #         logger.warning("Summarization failed or wasn't needed - proceeding with original messages")
                    # elif not enable_context_manager:
                    #     logger.info("Automatic summarization disabled. Skipping token count check and summarization.")

                except Exception as e:
                    logger.error(f"Error counting tokens or summarizing: {str(e)}")

                # 3. Prepare messages for LLM call + add temporary message if it exists
                # Use the working_system_prompt which may contain the XML examples
                prepared_messages = [working_system_prompt]

                # Find the last user message index
                last_user_index = -1
                for i, msg in enumerate(messages):
                    if msg.get('role') == 'user':
                        last_user_index = i

                # Insert temporary message before the last user message if it exists
                if temp_msg and last_user_index >= 0:
                    prepared_messages.extend(messages[:last_user_index])
                    prepared_messages.append(temp_msg)
                    prepared_messages.extend(messages[last_user_index:])
                    logger.debug("Added temporary message before the last user message")
                else:
                    # If no user message or no temporary message, just add all messages
                    prepared_messages.extend(messages)
                    if temp_msg:
                        prepared_messages.append(temp_msg)
                        logger.debug("Added temporary message to the end of prepared messages")

                # 4. Prepare tools for LLM call
                openapi_tool_schemas = None
                if processor_config.native_tool_calling:
                    openapi_tool_schemas = self.tool_registry.get_openapi_schemas()
                    logger.debug(f"Retrieved {len(openapi_tool_schemas) if openapi_tool_schemas else 0} OpenAPI tool schemas")

                # 5. Make LLM API call
                logger.debug("Making LLM API call")
                try:
                    llm_response = await make_llm_api_call(
                        prepared_messages, # Pass the potentially modified messages
                        llm_model,
                        temperature=llm_temperature,
                        max_tokens=llm_max_tokens,
                        tools=openapi_tool_schemas,
                        tool_choice=tool_choice if processor_config.native_tool_calling else None,
                        stream=stream,
                        enable_thinking=enable_thinking,
                        reasoning_effort=reasoning_effort
                    )
                    logger.debug("Successfully received raw LLM API response stream/object")

                except Exception as e:
                    logger.error(f"Failed to make LLM API call: {str(e)}", exc_info=True)
                    raise

                # 6. Process LLM response using the ResponseProcessor
                if stream:
                    logger.debug("Processing streaming response")
                    response_generator = self.response_processor.process_streaming_response(
                        llm_response=llm_response,
                        thread_id=thread_id,
                        config=processor_config,
                        prompt_messages=prepared_messages,
                        llm_model=llm_model
                    )

                    return response_generator
                else:
                    logger.debug("Processing non-streaming response")
                    try:
                        # Return the async generator directly, don't await it
                        response_generator = self.response_processor.process_non_streaming_response(
                            llm_response=llm_response,
                            thread_id=thread_id,
                            config=processor_config,
                            prompt_messages=prepared_messages,
                            llm_model=llm_model
                        )
                        return response_generator # Return the generator
                    except Exception as e:
                        logger.error(f"Error setting up non-streaming response: {str(e)}", exc_info=True)
                        raise # Re-raise the exception to be caught by the outer handler

            except Exception as e:
                logger.error(f"Error in run_thread: {str(e)}", exc_info=True)
                return {
                    "status": "error",
                    "message": str(e)
                }

        # Define a wrapper generator that handles auto-continue logic
        async def auto_continue_wrapper():
            nonlocal auto_continue, auto_continue_count

            while auto_continue and (native_max_auto_continues == 0 or auto_continue_count < native_max_auto_continues):
                # Reset auto_continue for this iteration
                auto_continue = False

                # Run the thread once, passing the potentially modified system prompt
                # Pass temp_msg only on the first iteration
                response_gen = await _run_once(temporary_message if auto_continue_count == 0 else None)

                # Handle error responses
                if isinstance(response_gen, dict) and "status" in response_gen and response_gen["status"] == "error":
                    yield response_gen
                    return

                # Process each chunk
                async for chunk in response_gen:
                    # Check if this is a finish reason chunk with tool_calls or xml_tool_limit_reached
                    if chunk.get('type') == 'finish':
                        if chunk.get('finish_reason') == 'tool_calls':
                            # Only auto-continue if enabled (max > 0)
                            if native_max_auto_continues > 0:
                                logger.info(f"Detected finish_reason='tool_calls', auto-continuing ({auto_continue_count + 1}/{native_max_auto_continues})")
                                auto_continue = True
                                auto_continue_count += 1
                                # Don't yield the finish chunk to avoid confusing the client
                                continue
                        elif chunk.get('finish_reason') == 'xml_tool_limit_reached':
                            # Don't auto-continue if XML tool limit was reached
                            logger.info(f"Detected finish_reason='xml_tool_limit_reached', stopping auto-continue")
                            auto_continue = False
                            # Still yield the chunk to inform the client

                    # Otherwise just yield the chunk normally
                    yield chunk

                # If not auto-continuing, we're done
                if not auto_continue:
                    break

            # If we've reached the max auto-continues, log a warning
            if auto_continue and auto_continue_count >= native_max_auto_continues:
                logger.warning(f"Reached maximum auto-continue limit ({native_max_auto_continues}), stopping.")
                yield {
                    "type": "content",
                    "content": f"\n[Agent reached maximum auto-continue limit of {native_max_auto_continues}]"
                }

        # If auto-continue is disabled (max=0), just run once
        if native_max_auto_continues == 0:
            logger.info("Auto-continue is disabled (native_max_auto_continues=0)")
            # Pass the potentially modified system prompt and temp message
            return await _run_once(temporary_message)

        # Otherwise return the auto-continue wrapper generator
        return auto_continue_wrapper()