import os | |
import json | |
import re | |
from uuid import uuid4 | |
from typing import Optional | |
# from agent.tools.message_tool import MessageTool | |
from agent.tools.message_tool import MessageTool | |
from agent.tools.sb_deploy_tool import SandboxDeployTool | |
from agent.tools.sb_expose_tool import SandboxExposeTool | |
from agent.tools.web_search_tool import WebSearchTool | |
from dotenv import load_dotenv | |
from utils.config import config | |
from agentpress.thread_manager import ThreadManager | |
from agentpress.response_processor import ProcessorConfig | |
from agent.tools.sb_shell_tool import SandboxShellTool | |
from agent.tools.sb_files_tool import SandboxFilesTool | |
from agent.tools.sb_browser_tool import SandboxBrowserTool | |
from agent.tools.data_providers_tool import DataProvidersTool | |
from agent.prompt import get_system_prompt | |
from utils import logger | |
from utils.auth_utils import get_account_id_from_thread | |
from services.billing import check_billing_status | |
from agent.tools.sb_vision_tool import SandboxVisionTool | |
load_dotenv() | |
async def run_agent( | |
thread_id: str, | |
project_id: str, | |
stream: bool, | |
thread_manager: Optional[ThreadManager] = None, | |
native_max_auto_continues: int = 25, | |
max_iterations: int = 150, | |
model_name: str = "anthropic/claude-3-7-sonnet-latest", | |
enable_thinking: Optional[bool] = False, | |
reasoning_effort: Optional[str] = 'low', | |
enable_context_manager: bool = True | |
): | |
"""Run the development agent with specified configuration.""" | |
print(f"๐ Starting agent with model: {model_name}") | |
thread_manager = ThreadManager() | |
client = await thread_manager.db.client | |
# Get account ID from thread for billing checks | |
account_id = await get_account_id_from_thread(client, thread_id) | |
if not account_id: | |
raise ValueError("Could not determine account ID for thread") | |
# Get sandbox info from project | |
project = await client.table('projects').select('*').eq('project_id', project_id).execute() | |
if not project.data or len(project.data) == 0: | |
raise ValueError(f"Project {project_id} not found") | |
project_data = project.data[0] | |
sandbox_info = project_data.get('sandbox', {}) | |
if not sandbox_info.get('id'): | |
raise ValueError(f"No sandbox found for project {project_id}") | |
# Initialize tools with project_id instead of sandbox object | |
# This ensures each tool independently verifies it's operating on the correct project | |
thread_manager.add_tool(SandboxShellTool, project_id=project_id, thread_manager=thread_manager) | |
thread_manager.add_tool(SandboxFilesTool, project_id=project_id, thread_manager=thread_manager) | |
thread_manager.add_tool(SandboxBrowserTool, project_id=project_id, thread_id=thread_id, thread_manager=thread_manager) | |
thread_manager.add_tool(SandboxDeployTool, project_id=project_id, thread_manager=thread_manager) | |
thread_manager.add_tool(SandboxExposeTool, project_id=project_id, thread_manager=thread_manager) | |
thread_manager.add_tool(MessageTool) # we are just doing this via prompt as there is no need to call it as a tool | |
thread_manager.add_tool(WebSearchTool) | |
thread_manager.add_tool(SandboxVisionTool, project_id=project_id, thread_id=thread_id, thread_manager=thread_manager) | |
# Add data providers tool if RapidAPI key is available | |
if config.RAPID_API_KEY: | |
thread_manager.add_tool(DataProvidersTool) | |
# Only include sample response if the model name does not contain "anthropic" | |
if "anthropic" not in model_name.lower(): | |
sample_response_path = os.path.join(os.path.dirname(__file__), 'sample_responses/1.txt') | |
with open(sample_response_path, 'r') as file: | |
sample_response = file.read() | |
system_message = { "role": "system", "content": get_system_prompt() + "\n\n <sample_assistant_response>" + sample_response + "</sample_assistant_response>" } | |
else: | |
system_message = { "role": "system", "content": get_system_prompt() } | |
iteration_count = 0 | |
continue_execution = True | |
while continue_execution and iteration_count < max_iterations: | |
iteration_count += 1 | |
# logger.debug(f"Running iteration {iteration_count}...") | |
# Billing check on each iteration - still needed within the iterations | |
can_run, message, subscription = await check_billing_status(client, account_id) | |
if not can_run: | |
error_msg = f"Billing limit reached: {message}" | |
# Yield a special message to indicate billing limit reached | |
yield { | |
"type": "status", | |
"status": "stopped", | |
"message": error_msg | |
} | |
break | |
# Check if last message is from assistant using direct Supabase query | |
latest_message = await client.table('messages').select('*').eq('thread_id', thread_id).in_('type', ['assistant', 'tool', 'user']).order('created_at', desc=True).limit(1).execute() | |
if latest_message.data and len(latest_message.data) > 0: | |
message_type = latest_message.data[0].get('type') | |
if message_type == 'assistant': | |
print(f"Last message was from assistant, stopping execution") | |
continue_execution = False | |
break | |
# ---- Temporary Message Handling (Browser State & Image Context) ---- | |
temporary_message = None | |
temp_message_content_list = [] # List to hold text/image blocks | |
# Get the latest browser_state message | |
latest_browser_state_msg = await client.table('messages').select('*').eq('thread_id', thread_id).eq('type', 'browser_state').order('created_at', desc=True).limit(1).execute() | |
if latest_browser_state_msg.data and len(latest_browser_state_msg.data) > 0: | |
try: | |
browser_content = json.loads(latest_browser_state_msg.data[0]["content"]) | |
screenshot_base64 = browser_content.get("screenshot_base64") | |
# Create a copy of the browser state without screenshot | |
browser_state_text = browser_content.copy() | |
browser_state_text.pop('screenshot_base64', None) | |
browser_state_text.pop('screenshot_url', None) | |
browser_state_text.pop('screenshot_url_base64', None) | |
if browser_state_text: | |
temp_message_content_list.append({ | |
"type": "text", | |
"text": f"The following is the current state of the browser:\n{json.dumps(browser_state_text, indent=2)}" | |
}) | |
if screenshot_base64: | |
temp_message_content_list.append({ | |
"type": "image_url", | |
"image_url": { | |
"url": f"data:image/jpeg;base64,{screenshot_base64}", | |
} | |
}) | |
else: | |
logger.warning("Browser state found but no screenshot base64 data.") | |
await client.table('messages').delete().eq('message_id', latest_browser_state_msg.data[0]["message_id"]).execute() | |
except Exception as e: | |
logger.error(f"Error parsing browser state: {e}") | |
# Get the latest image_context message (NEW) | |
latest_image_context_msg = await client.table('messages').select('*').eq('thread_id', thread_id).eq('type', 'image_context').order('created_at', desc=True).limit(1).execute() | |
if latest_image_context_msg.data and len(latest_image_context_msg.data) > 0: | |
try: | |
image_context_content = json.loads(latest_image_context_msg.data[0]["content"]) | |
base64_image = image_context_content.get("base64") | |
mime_type = image_context_content.get("mime_type") | |
file_path = image_context_content.get("file_path", "unknown file") | |
if base64_image and mime_type: | |
temp_message_content_list.append({ | |
"type": "text", | |
"text": f"Here is the image you requested to see: '{file_path}'" | |
}) | |
temp_message_content_list.append({ | |
"type": "image_url", | |
"image_url": { | |
"url": f"data:{mime_type};base64,{base64_image}", | |
} | |
}) | |
else: | |
logger.warning(f"Image context found for '{file_path}' but missing base64 or mime_type.") | |
await client.table('messages').delete().eq('message_id', latest_image_context_msg.data[0]["message_id"]).execute() | |
except Exception as e: | |
logger.error(f"Error parsing image context: {e}") | |
# If we have any content, construct the temporary_message | |
if temp_message_content_list: | |
temporary_message = {"role": "user", "content": temp_message_content_list} | |
# logger.debug(f"Constructed temporary message with {len(temp_message_content_list)} content blocks.") | |
# ---- End Temporary Message Handling ---- | |
# Set max_tokens based on model | |
max_tokens = None | |
if "sonnet" in model_name.lower(): | |
max_tokens = 64000 | |
elif "gpt-4" in model_name.lower(): | |
max_tokens = 4096 | |
response = await thread_manager.run_thread( | |
thread_id=thread_id, | |
system_prompt=system_message, | |
stream=stream, | |
llm_model=model_name, | |
llm_temperature=0, | |
llm_max_tokens=max_tokens, | |
tool_choice="auto", | |
max_xml_tool_calls=1, | |
temporary_message=temporary_message, | |
processor_config=ProcessorConfig( | |
xml_tool_calling=True, | |
native_tool_calling=False, | |
execute_tools=True, | |
execute_on_stream=True, | |
tool_execution_strategy="parallel", | |
xml_adding_strategy="user_message" | |
), | |
native_max_auto_continues=native_max_auto_continues, | |
include_xml_examples=True, | |
enable_thinking=enable_thinking, | |
reasoning_effort=reasoning_effort, | |
enable_context_manager=enable_context_manager | |
) | |
if isinstance(response, dict) and "status" in response and response["status"] == "error": | |
yield response | |
return | |
# Track if we see ask, complete, or web-browser-takeover tool calls | |
last_tool_call = None | |
async for chunk in response: | |
# print(f"CHUNK: {chunk}") # Uncomment for detailed chunk logging | |
# Check for XML versions like <ask>, <complete>, or <web-browser-takeover> in assistant content chunks | |
if chunk.get('type') == 'assistant' and 'content' in chunk: | |
try: | |
# The content field might be a JSON string or object | |
content = chunk.get('content', '{}') | |
if isinstance(content, str): | |
assistant_content_json = json.loads(content) | |
else: | |
assistant_content_json = content | |
# The actual text content is nested within | |
assistant_text = assistant_content_json.get('content', '') | |
if isinstance(assistant_text, str): # Ensure it's a string | |
# Check for the closing tags as they signal the end of the tool usage | |
if '</ask>' in assistant_text or '</complete>' in assistant_text or '</web-browser-takeover>' in assistant_text: | |
if '</ask>' in assistant_text: | |
xml_tool = 'ask' | |
elif '</complete>' in assistant_text: | |
xml_tool = 'complete' | |
elif '</web-browser-takeover>' in assistant_text: | |
xml_tool = 'web-browser-takeover' | |
last_tool_call = xml_tool | |
print(f"Agent used XML tool: {xml_tool}") | |
except json.JSONDecodeError: | |
# Handle cases where content might not be valid JSON | |
print(f"Warning: Could not parse assistant content JSON: {chunk.get('content')}") | |
except Exception as e: | |
print(f"Error processing assistant chunk: {e}") | |
# # Check for native function calls (OpenAI format) | |
# elif chunk.get('type') == 'status' and 'content' in chunk: | |
# try: | |
# # Parse the status content | |
# status_content = chunk.get('content', '{}') | |
# if isinstance(status_content, str): | |
# status_content = json.loads(status_content) | |
# # Check if this is a tool call status | |
# status_type = status_content.get('status_type') | |
# function_name = status_content.get('function_name', '') | |
# # Check for special function names that should stop execution | |
# if status_type == 'tool_started' and function_name in ['ask', 'complete', 'web-browser-takeover']: | |
# last_tool_call = function_name | |
# print(f"Agent used native function call: {function_name}") | |
# except json.JSONDecodeError: | |
# # Handle cases where content might not be valid JSON | |
# print(f"Warning: Could not parse status content JSON: {chunk.get('content')}") | |
# except Exception as e: | |
# print(f"Error processing status chunk: {e}") | |
yield chunk | |
# Check if we should stop based on the last tool call | |
if last_tool_call in ['ask', 'complete', 'web-browser-takeover']: | |
print(f"Agent decided to stop with tool: {last_tool_call}") | |
continue_execution = False | |
# # TESTING | |
# async def test_agent(): | |
# """Test function to run the agent with a sample query""" | |
# from agentpress.thread_manager import ThreadManager | |
# from services.supabase import DBConnection | |
# # Initialize ThreadManager | |
# thread_manager = ThreadManager() | |
# # Create a test thread directly with Postgres function | |
# client = await DBConnection().client | |
# try: | |
# # Get user's personal account | |
# account_result = await client.rpc('get_personal_account').execute() | |
# # if not account_result.data: | |
# # print("Error: No personal account found") | |
# # return | |
# account_id = "a5fe9cb6-4812-407e-a61c-fe95b7320c59" | |
# if not account_id: | |
# print("Error: Could not get account ID") | |
# return | |
# # Find or create a test project in the user's account | |
# project_result = await client.table('projects').select('*').eq('name', 'test11').eq('account_id', account_id).execute() | |
# if project_result.data and len(project_result.data) > 0: | |
# # Use existing test project | |
# project_id = project_result.data[0]['project_id'] | |
# print(f"\n๐ Using existing test project: {project_id}") | |
# else: | |
# # Create new test project if none exists | |
# project_result = await client.table('projects').insert({ | |
# "name": "test11", | |
# "account_id": account_id | |
# }).execute() | |
# project_id = project_result.data[0]['project_id'] | |
# print(f"\nโจ Created new test project: {project_id}") | |
# # Create a thread for this project | |
# thread_result = await client.table('threads').insert({ | |
# 'project_id': project_id, | |
# 'account_id': account_id | |
# }).execute() | |
# thread_data = thread_result.data[0] if thread_result.data else None | |
# if not thread_data: | |
# print("Error: No thread data returned") | |
# return | |
# thread_id = thread_data['thread_id'] | |
# except Exception as e: | |
# print(f"Error setting up thread: {str(e)}") | |
# return | |
# print(f"\n๐ค Agent Thread Created: {thread_id}\n") | |
# # Interactive message input loop | |
# while True: | |
# # Get user input | |
# user_message = input("\n๐ฌ Enter your message (or 'exit' to quit): ") | |
# if user_message.lower() == 'exit': | |
# break | |
# if not user_message.strip(): | |
# print("\n๐ Running agent...\n") | |
# await process_agent_response(thread_id, project_id, thread_manager) | |
# continue | |
# # Add the user message to the thread | |
# await thread_manager.add_message( | |
# thread_id=thread_id, | |
# type="user", | |
# content={ | |
# "role": "user", | |
# "content": user_message | |
# }, | |
# is_llm_message=True | |
# ) | |
# print("\n๐ Running agent...\n") | |
# await process_agent_response(thread_id, project_id, thread_manager) | |
# print("\n๐ Test completed. Goodbye!") | |
# async def process_agent_response( | |
# thread_id: str, | |
# project_id: str, | |
# thread_manager: ThreadManager, | |
# stream: bool = True, | |
# model_name: str = "anthropic/claude-3-7-sonnet-latest", | |
# enable_thinking: Optional[bool] = False, | |
# reasoning_effort: Optional[str] = 'low', | |
# enable_context_manager: bool = True | |
# ): | |
# """Process the streaming response from the agent.""" | |
# chunk_counter = 0 | |
# current_response = "" | |
# tool_usage_counter = 0 # Renamed from tool_call_counter as we track usage via status | |
# # Create a test sandbox for processing with a unique test prefix to avoid conflicts with production sandboxes | |
# sandbox_pass = str(uuid4()) | |
# sandbox = create_sandbox(sandbox_pass) | |
# # Store the original ID so we can refer to it | |
# original_sandbox_id = sandbox.id | |
# # Generate a clear test identifier | |
# test_prefix = f"test_{uuid4().hex[:8]}_" | |
# logger.info(f"Created test sandbox with ID {original_sandbox_id} and test prefix {test_prefix}") | |
# # Log the sandbox URL for debugging | |
# print(f"\033[91mTest sandbox created: {str(sandbox.get_preview_link(6080))}/vnc_lite.html?password={sandbox_pass}\033[0m") | |
# async for chunk in run_agent( | |
# thread_id=thread_id, | |
# project_id=project_id, | |
# sandbox=sandbox, | |
# stream=stream, | |
# thread_manager=thread_manager, | |
# native_max_auto_continues=25, | |
# model_name=model_name, | |
# enable_thinking=enable_thinking, | |
# reasoning_effort=reasoning_effort, | |
# enable_context_manager=enable_context_manager | |
# ): | |
# chunk_counter += 1 | |
# # print(f"CHUNK: {chunk}") # Uncomment for debugging | |
# if chunk.get('type') == 'assistant': | |
# # Try parsing the content JSON | |
# try: | |
# # Handle content as string or object | |
# content = chunk.get('content', '{}') | |
# if isinstance(content, str): | |
# content_json = json.loads(content) | |
# else: | |
# content_json = content | |
# actual_content = content_json.get('content', '') | |
# # Print the actual assistant text content as it comes | |
# if actual_content: | |
# # Check if it contains XML tool tags, if so, print the whole tag for context | |
# if '<' in actual_content and '>' in actual_content: | |
# # Avoid printing potentially huge raw content if it's not just text | |
# if len(actual_content) < 500: # Heuristic limit | |
# print(actual_content, end='', flush=True) | |
# else: | |
# # Maybe just print a summary if it's too long or contains complex XML | |
# if '</ask>' in actual_content: print("<ask>...</ask>", end='', flush=True) | |
# elif '</complete>' in actual_content: print("<complete>...</complete>", end='', flush=True) | |
# else: print("<tool_call>...</tool_call>", end='', flush=True) # Generic case | |
# else: | |
# # Regular text content | |
# print(actual_content, end='', flush=True) | |
# current_response += actual_content # Accumulate only text part | |
# except json.JSONDecodeError: | |
# # If content is not JSON (e.g., just a string chunk), print directly | |
# raw_content = chunk.get('content', '') | |
# print(raw_content, end='', flush=True) | |
# current_response += raw_content | |
# except Exception as e: | |
# print(f"\nError processing assistant chunk: {e}\n") | |
# elif chunk.get('type') == 'tool': # Updated from 'tool_result' | |
# # Add timestamp and format tool result nicely | |
# tool_name = "UnknownTool" # Try to get from metadata if available | |
# result_content = "No content" | |
# # Parse metadata - handle both string and dict formats | |
# metadata = chunk.get('metadata', {}) | |
# if isinstance(metadata, str): | |
# try: | |
# metadata = json.loads(metadata) | |
# except json.JSONDecodeError: | |
# metadata = {} | |
# linked_assistant_msg_id = metadata.get('assistant_message_id') | |
# parsing_details = metadata.get('parsing_details') | |
# if parsing_details: | |
# tool_name = parsing_details.get('xml_tag_name', 'UnknownTool') # Get name from parsing details | |
# try: | |
# # Content is a JSON string or object | |
# content = chunk.get('content', '{}') | |
# if isinstance(content, str): | |
# content_json = json.loads(content) | |
# else: | |
# content_json = content | |
# # The actual tool result is nested inside content.content | |
# tool_result_str = content_json.get('content', '') | |
# # Extract the actual tool result string (remove outer <tool_result> tag if present) | |
# match = re.search(rf'<{tool_name}>(.*?)</{tool_name}>', tool_result_str, re.DOTALL) | |
# if match: | |
# result_content = match.group(1).strip() | |
# # Try to parse the result string itself as JSON for pretty printing | |
# try: | |
# result_obj = json.loads(result_content) | |
# result_content = json.dumps(result_obj, indent=2) | |
# except json.JSONDecodeError: | |
# # Keep as string if not JSON | |
# pass | |
# else: | |
# # Fallback if tag extraction fails | |
# result_content = tool_result_str | |
# except json.JSONDecodeError: | |
# result_content = chunk.get('content', 'Error parsing tool content') | |
# except Exception as e: | |
# result_content = f"Error processing tool chunk: {e}" | |
# print(f"\n\n๐ ๏ธ TOOL RESULT [{tool_name}] โ {result_content}") | |
# elif chunk.get('type') == 'status': | |
# # Log tool status changes | |
# try: | |
# # Handle content as string or object | |
# status_content = chunk.get('content', '{}') | |
# if isinstance(status_content, str): | |
# status_content = json.loads(status_content) | |
# status_type = status_content.get('status_type') | |
# function_name = status_content.get('function_name', '') | |
# xml_tag_name = status_content.get('xml_tag_name', '') # Get XML tag if available | |
# tool_name = xml_tag_name or function_name # Prefer XML tag name | |
# if status_type == 'tool_started' and tool_name: | |
# tool_usage_counter += 1 | |
# print(f"\nโณ TOOL STARTING #{tool_usage_counter} [{tool_name}]") | |
# print(" " + "-" * 40) | |
# # Return to the current content display | |
# if current_response: | |
# print("\nContinuing response:", flush=True) | |
# print(current_response, end='', flush=True) | |
# elif status_type == 'tool_completed' and tool_name: | |
# status_emoji = "โ " | |
# print(f"\n{status_emoji} TOOL COMPLETED: {tool_name}") | |
# elif status_type == 'finish': | |
# finish_reason = status_content.get('finish_reason', '') | |
# if finish_reason: | |
# print(f"\n๐ Finished: {finish_reason}") | |
# # else: # Print other status types if needed for debugging | |
# # print(f"\nโน๏ธ STATUS: {chunk.get('content')}") | |
# except json.JSONDecodeError: | |
# print(f"\nWarning: Could not parse status content JSON: {chunk.get('content')}") | |
# except Exception as e: | |
# print(f"\nError processing status chunk: {e}") | |
# # Removed elif chunk.get('type') == 'tool_call': block | |
# # Update final message | |
# print(f"\n\nโ Agent run completed with {tool_usage_counter} tool executions") | |
# # Try to clean up the test sandbox if possible | |
# try: | |
# # Attempt to delete/archive the sandbox to clean up resources | |
# # Note: Actual deletion may depend on the Daytona SDK's capabilities | |
# logger.info(f"Attempting to clean up test sandbox {original_sandbox_id}") | |
# # If there's a method to archive/delete the sandbox, call it here | |
# # Example: daytona.archive_sandbox(sandbox.id) | |
# except Exception as e: | |
# logger.warning(f"Failed to clean up test sandbox {original_sandbox_id}: {str(e)}") | |
# if __name__ == "__main__": | |
# import asyncio | |
# # Configure any environment variables or setup needed for testing | |
# load_dotenv() # Ensure environment variables are loaded | |
# # Run the test function | |
# asyncio.run(test_agent()) |