|
""" |
|
LLM Response Processor for AgentPress. |
|
|
|
This module handles processing of LLM responses including: |
|
- Parsing of content for both streaming and non-streaming responses |
|
- Detection and extraction of tool calls (both XML-based and native function calling) |
|
- Tool execution with different strategies |
|
- Adding tool results back to the conversation thread |
|
""" |
|
|
|
import json |
|
import asyncio |
|
import re |
|
import uuid |
|
from typing import List, Dict, Any, Optional, Tuple, AsyncGenerator, Callable, Union, Literal |
|
from dataclasses import dataclass |
|
from datetime import datetime, timezone |
|
|
|
from litellm import completion_cost, token_counter |
|
|
|
from agentpress.tool import Tool, ToolResult |
|
from agentpress.tool_registry import ToolRegistry |
|
from utils.logger import logger |
|
|
|
|
|
XmlAddingStrategy = Literal["user_message", "assistant_message", "inline_edit"] |
|
|
|
|
|
ToolExecutionStrategy = Literal["sequential", "parallel"] |
|
|
|
@dataclass |
|
class ToolExecutionContext: |
|
"""Context for a tool execution including call details, result, and display info.""" |
|
tool_call: Dict[str, Any] |
|
tool_index: int |
|
result: Optional[ToolResult] = None |
|
function_name: Optional[str] = None |
|
xml_tag_name: Optional[str] = None |
|
error: Optional[Exception] = None |
|
assistant_message_id: Optional[str] = None |
|
parsing_details: Optional[Dict[str, Any]] = None |
|
|
|
@dataclass |
|
class ProcessorConfig: |
|
""" |
|
Configuration for response processing and tool execution. |
|
|
|
This class controls how the LLM's responses are processed, including how tool calls |
|
are detected, executed, and their results handled. |
|
|
|
Attributes: |
|
xml_tool_calling: Enable XML-based tool call detection (<tool>...</tool>) |
|
native_tool_calling: Enable OpenAI-style function calling format |
|
execute_tools: Whether to automatically execute detected tool calls |
|
execute_on_stream: For streaming, execute tools as they appear vs. at the end |
|
tool_execution_strategy: How to execute multiple tools ("sequential" or "parallel") |
|
xml_adding_strategy: How to add XML tool results to the conversation |
|
max_xml_tool_calls: Maximum number of XML tool calls to process (0 = no limit) |
|
""" |
|
|
|
xml_tool_calling: bool = True |
|
native_tool_calling: bool = False |
|
|
|
execute_tools: bool = True |
|
execute_on_stream: bool = False |
|
tool_execution_strategy: ToolExecutionStrategy = "sequential" |
|
xml_adding_strategy: XmlAddingStrategy = "assistant_message" |
|
max_xml_tool_calls: int = 0 |
|
|
|
def __post_init__(self): |
|
"""Validate configuration after initialization.""" |
|
if self.xml_tool_calling is False and self.native_tool_calling is False and self.execute_tools: |
|
raise ValueError("At least one tool calling format (XML or native) must be enabled if execute_tools is True") |
|
|
|
if self.xml_adding_strategy not in ["user_message", "assistant_message", "inline_edit"]: |
|
raise ValueError("xml_adding_strategy must be 'user_message', 'assistant_message', or 'inline_edit'") |
|
|
|
if self.max_xml_tool_calls < 0: |
|
raise ValueError("max_xml_tool_calls must be a non-negative integer (0 = no limit)") |
|
|
|
class ResponseProcessor: |
|
"""Processes LLM responses, extracting and executing tool calls.""" |
|
|
|
def __init__(self, tool_registry: ToolRegistry, add_message_callback: Callable): |
|
"""Initialize the ResponseProcessor. |
|
|
|
Args: |
|
tool_registry: Registry of available tools |
|
add_message_callback: Callback function to add messages to the thread. |
|
MUST return the full saved message object (dict) or None. |
|
""" |
|
self.tool_registry = tool_registry |
|
self.add_message = add_message_callback |
|
|
|
async def process_streaming_response( |
|
self, |
|
llm_response: AsyncGenerator, |
|
thread_id: str, |
|
prompt_messages: List[Dict[str, Any]], |
|
llm_model: str, |
|
config: ProcessorConfig = ProcessorConfig(), |
|
) -> AsyncGenerator[Dict[str, Any], None]: |
|
"""Process a streaming LLM response, handling tool calls and execution. |
|
|
|
Args: |
|
llm_response: Streaming response from the LLM |
|
thread_id: ID of the conversation thread |
|
prompt_messages: List of messages sent to the LLM (the prompt) |
|
llm_model: The name of the LLM model used |
|
config: Configuration for parsing and execution |
|
|
|
Yields: |
|
Complete message objects matching the DB schema, except for content chunks. |
|
""" |
|
accumulated_content = "" |
|
tool_calls_buffer = {} |
|
current_xml_content = "" |
|
xml_chunks_buffer = [] |
|
pending_tool_executions = [] |
|
yielded_tool_indices = set() |
|
tool_index = 0 |
|
xml_tool_call_count = 0 |
|
finish_reason = None |
|
last_assistant_message_object = None |
|
tool_result_message_objects = {} |
|
has_printed_thinking_prefix = False |
|
|
|
logger.info(f"Streaming Config: XML={config.xml_tool_calling}, Native={config.native_tool_calling}, " |
|
f"Execute on stream={config.execute_on_stream}, Strategy={config.tool_execution_strategy}") |
|
|
|
thread_run_id = str(uuid.uuid4()) |
|
|
|
try: |
|
|
|
start_content = {"status_type": "thread_run_start", "thread_run_id": thread_run_id} |
|
start_msg_obj = await self.add_message( |
|
thread_id=thread_id, type="status", content=start_content, |
|
is_llm_message=False, metadata={"thread_run_id": thread_run_id} |
|
) |
|
if start_msg_obj: yield start_msg_obj |
|
|
|
assist_start_content = {"status_type": "assistant_response_start"} |
|
assist_start_msg_obj = await self.add_message( |
|
thread_id=thread_id, type="status", content=assist_start_content, |
|
is_llm_message=False, metadata={"thread_run_id": thread_run_id} |
|
) |
|
if assist_start_msg_obj: yield assist_start_msg_obj |
|
|
|
|
|
async for chunk in llm_response: |
|
if hasattr(chunk, 'choices') and chunk.choices and hasattr(chunk.choices[0], 'finish_reason') and chunk.choices[0].finish_reason: |
|
finish_reason = chunk.choices[0].finish_reason |
|
logger.debug(f"Detected finish_reason: {finish_reason}") |
|
|
|
if hasattr(chunk, 'choices') and chunk.choices: |
|
delta = chunk.choices[0].delta if hasattr(chunk.choices[0], 'delta') else None |
|
|
|
|
|
if delta and hasattr(delta, 'reasoning_content') and delta.reasoning_content: |
|
if not has_printed_thinking_prefix: |
|
|
|
has_printed_thinking_prefix = True |
|
|
|
|
|
accumulated_content += delta.reasoning_content |
|
|
|
|
|
if delta and hasattr(delta, 'content') and delta.content: |
|
chunk_content = delta.content |
|
|
|
accumulated_content += chunk_content |
|
current_xml_content += chunk_content |
|
|
|
if not (config.max_xml_tool_calls > 0 and xml_tool_call_count >= config.max_xml_tool_calls): |
|
|
|
now_chunk = datetime.now(timezone.utc).isoformat() |
|
yield { |
|
"message_id": None, "thread_id": thread_id, "type": "assistant", |
|
"is_llm_message": True, |
|
"content": json.dumps({"role": "assistant", "content": chunk_content}), |
|
"metadata": json.dumps({"stream_status": "chunk", "thread_run_id": thread_run_id}), |
|
"created_at": now_chunk, "updated_at": now_chunk |
|
} |
|
else: |
|
logger.info("XML tool call limit reached - not yielding more content chunks") |
|
|
|
|
|
if config.xml_tool_calling and not (config.max_xml_tool_calls > 0 and xml_tool_call_count >= config.max_xml_tool_calls): |
|
xml_chunks = self._extract_xml_chunks(current_xml_content) |
|
for xml_chunk in xml_chunks: |
|
current_xml_content = current_xml_content.replace(xml_chunk, "", 1) |
|
xml_chunks_buffer.append(xml_chunk) |
|
result = self._parse_xml_tool_call(xml_chunk) |
|
if result: |
|
tool_call, parsing_details = result |
|
xml_tool_call_count += 1 |
|
current_assistant_id = last_assistant_message_object['message_id'] if last_assistant_message_object else None |
|
context = self._create_tool_context( |
|
tool_call, tool_index, current_assistant_id, parsing_details |
|
) |
|
|
|
if config.execute_tools and config.execute_on_stream: |
|
|
|
started_msg_obj = await self._yield_and_save_tool_started(context, thread_id, thread_run_id) |
|
if started_msg_obj: yield started_msg_obj |
|
yielded_tool_indices.add(tool_index) |
|
|
|
execution_task = asyncio.create_task(self._execute_tool(tool_call)) |
|
pending_tool_executions.append({ |
|
"task": execution_task, "tool_call": tool_call, |
|
"tool_index": tool_index, "context": context |
|
}) |
|
tool_index += 1 |
|
|
|
if config.max_xml_tool_calls > 0 and xml_tool_call_count >= config.max_xml_tool_calls: |
|
logger.debug(f"Reached XML tool call limit ({config.max_xml_tool_calls})") |
|
finish_reason = "xml_tool_limit_reached" |
|
break |
|
|
|
|
|
if config.native_tool_calling and delta and hasattr(delta, 'tool_calls') and delta.tool_calls: |
|
for tool_call_chunk in delta.tool_calls: |
|
|
|
|
|
tool_call_data_chunk = {} |
|
if hasattr(tool_call_chunk, 'model_dump'): tool_call_data_chunk = tool_call_chunk.model_dump() |
|
else: |
|
if hasattr(tool_call_chunk, 'id'): tool_call_data_chunk['id'] = tool_call_chunk.id |
|
if hasattr(tool_call_chunk, 'index'): tool_call_data_chunk['index'] = tool_call_chunk.index |
|
if hasattr(tool_call_chunk, 'type'): tool_call_data_chunk['type'] = tool_call_chunk.type |
|
if hasattr(tool_call_chunk, 'function'): |
|
tool_call_data_chunk['function'] = {} |
|
if hasattr(tool_call_chunk.function, 'name'): tool_call_data_chunk['function']['name'] = tool_call_chunk.function.name |
|
if hasattr(tool_call_chunk.function, 'arguments'): tool_call_data_chunk['function']['arguments'] = tool_call_chunk.function.arguments |
|
|
|
|
|
now_tool_chunk = datetime.now(timezone.utc).isoformat() |
|
yield { |
|
"message_id": None, "thread_id": thread_id, "type": "status", "is_llm_message": True, |
|
"content": json.dumps({"role": "assistant", "status_type": "tool_call_chunk", "tool_call_chunk": tool_call_data_chunk}), |
|
"metadata": json.dumps({"thread_run_id": thread_run_id}), |
|
"created_at": now_tool_chunk, "updated_at": now_tool_chunk |
|
} |
|
|
|
|
|
if not hasattr(tool_call_chunk, 'function'): continue |
|
idx = tool_call_chunk.index if hasattr(tool_call_chunk, 'index') else 0 |
|
|
|
|
|
has_complete_tool_call = False |
|
if (tool_calls_buffer.get(idx) and |
|
tool_calls_buffer[idx]['id'] and |
|
tool_calls_buffer[idx]['function']['name'] and |
|
tool_calls_buffer[idx]['function']['arguments']): |
|
try: |
|
json.loads(tool_calls_buffer[idx]['function']['arguments']) |
|
has_complete_tool_call = True |
|
except json.JSONDecodeError: pass |
|
|
|
|
|
if has_complete_tool_call and config.execute_tools and config.execute_on_stream: |
|
current_tool = tool_calls_buffer[idx] |
|
tool_call_data = { |
|
"function_name": current_tool['function']['name'], |
|
"arguments": json.loads(current_tool['function']['arguments']), |
|
"id": current_tool['id'] |
|
} |
|
current_assistant_id = last_assistant_message_object['message_id'] if last_assistant_message_object else None |
|
context = self._create_tool_context( |
|
tool_call_data, tool_index, current_assistant_id |
|
) |
|
|
|
|
|
started_msg_obj = await self._yield_and_save_tool_started(context, thread_id, thread_run_id) |
|
if started_msg_obj: yield started_msg_obj |
|
yielded_tool_indices.add(tool_index) |
|
|
|
execution_task = asyncio.create_task(self._execute_tool(tool_call_data)) |
|
pending_tool_executions.append({ |
|
"task": execution_task, "tool_call": tool_call_data, |
|
"tool_index": tool_index, "context": context |
|
}) |
|
tool_index += 1 |
|
|
|
if finish_reason == "xml_tool_limit_reached": |
|
logger.info("Stopping stream processing after loop due to XML tool call limit") |
|
break |
|
|
|
|
|
|
|
|
|
|
|
|
|
tool_results_buffer = [] |
|
if pending_tool_executions: |
|
logger.info(f"Waiting for {len(pending_tool_executions)} pending streamed tool executions") |
|
|
|
pending_tasks = [execution["task"] for execution in pending_tool_executions] |
|
done, _ = await asyncio.wait(pending_tasks) |
|
|
|
for execution in pending_tool_executions: |
|
tool_idx = execution.get("tool_index", -1) |
|
context = execution["context"] |
|
|
|
if tool_idx in yielded_tool_indices: |
|
logger.debug(f"Status for tool index {tool_idx} already yielded.") |
|
|
|
try: |
|
if execution["task"].done(): |
|
result = execution["task"].result() |
|
context.result = result |
|
tool_results_buffer.append((execution["tool_call"], result, tool_idx, context)) |
|
else: |
|
logger.warning(f"Task for tool index {tool_idx} not done after wait.") |
|
except Exception as e: |
|
logger.error(f"Error getting result for pending tool execution {tool_idx}: {str(e)}") |
|
context.error = e |
|
|
|
error_msg_obj = await self._yield_and_save_tool_error(context, thread_id, thread_run_id) |
|
if error_msg_obj: yield error_msg_obj |
|
continue |
|
|
|
|
|
try: |
|
if execution["task"].done(): |
|
result = execution["task"].result() |
|
context.result = result |
|
tool_results_buffer.append((execution["tool_call"], result, tool_idx, context)) |
|
|
|
completed_msg_obj = await self._yield_and_save_tool_completed( |
|
context, None, thread_id, thread_run_id |
|
) |
|
if completed_msg_obj: yield completed_msg_obj |
|
yielded_tool_indices.add(tool_idx) |
|
except Exception as e: |
|
logger.error(f"Error getting result/yielding status for pending tool execution {tool_idx}: {str(e)}") |
|
context.error = e |
|
|
|
error_msg_obj = await self._yield_and_save_tool_error(context, thread_id, thread_run_id) |
|
if error_msg_obj: yield error_msg_obj |
|
yielded_tool_indices.add(tool_idx) |
|
|
|
|
|
|
|
if finish_reason == "xml_tool_limit_reached": |
|
finish_content = {"status_type": "finish", "finish_reason": "xml_tool_limit_reached"} |
|
finish_msg_obj = await self.add_message( |
|
thread_id=thread_id, type="status", content=finish_content, |
|
is_llm_message=False, metadata={"thread_run_id": thread_run_id} |
|
) |
|
if finish_msg_obj: yield finish_msg_obj |
|
logger.info(f"Stream finished with reason: xml_tool_limit_reached after {xml_tool_call_count} XML tool calls") |
|
|
|
|
|
if accumulated_content: |
|
|
|
if config.max_xml_tool_calls > 0 and xml_tool_call_count >= config.max_xml_tool_calls and xml_chunks_buffer: |
|
last_xml_chunk = xml_chunks_buffer[-1] |
|
last_chunk_end_pos = accumulated_content.find(last_xml_chunk) + len(last_xml_chunk) |
|
if last_chunk_end_pos > 0: |
|
accumulated_content = accumulated_content[:last_chunk_end_pos] |
|
|
|
|
|
complete_native_tool_calls = [] |
|
if config.native_tool_calling: |
|
for idx, tc_buf in tool_calls_buffer.items(): |
|
if tc_buf['id'] and tc_buf['function']['name'] and tc_buf['function']['arguments']: |
|
try: |
|
args = json.loads(tc_buf['function']['arguments']) |
|
complete_native_tool_calls.append({ |
|
"id": tc_buf['id'], "type": "function", |
|
"function": {"name": tc_buf['function']['name'],"arguments": args} |
|
}) |
|
except json.JSONDecodeError: continue |
|
|
|
message_data = { |
|
"role": "assistant", "content": accumulated_content, |
|
"tool_calls": complete_native_tool_calls or None |
|
} |
|
|
|
last_assistant_message_object = await self.add_message( |
|
thread_id=thread_id, type="assistant", content=message_data, |
|
is_llm_message=True, metadata={"thread_run_id": thread_run_id} |
|
) |
|
|
|
if last_assistant_message_object: |
|
|
|
yield_metadata = json.loads(last_assistant_message_object.get('metadata', '{}')) |
|
yield_metadata['stream_status'] = 'complete' |
|
yield {**last_assistant_message_object, 'metadata': json.dumps(yield_metadata)} |
|
else: |
|
logger.error(f"Failed to save final assistant message for thread {thread_id}") |
|
|
|
err_content = {"role": "system", "status_type": "error", "message": "Failed to save final assistant message"} |
|
err_msg_obj = await self.add_message( |
|
thread_id=thread_id, type="status", content=err_content, |
|
is_llm_message=False, metadata={"thread_run_id": thread_run_id} |
|
) |
|
if err_msg_obj: yield err_msg_obj |
|
|
|
|
|
if config.execute_tools: |
|
final_tool_calls_to_process = [] |
|
|
|
|
|
if config.native_tool_calling and complete_native_tool_calls: |
|
for tc in complete_native_tool_calls: |
|
final_tool_calls_to_process.append({ |
|
"function_name": tc["function"]["name"], |
|
"arguments": tc["function"]["arguments"], |
|
"id": tc["id"] |
|
}) |
|
|
|
parsed_xml_data = [] |
|
if config.xml_tool_calling: |
|
|
|
xml_chunks = self._extract_xml_chunks(current_xml_content) |
|
xml_chunks_buffer.extend(xml_chunks) |
|
|
|
remaining_limit = config.max_xml_tool_calls - xml_tool_call_count if config.max_xml_tool_calls > 0 else len(xml_chunks_buffer) |
|
xml_chunks_to_process = xml_chunks_buffer[:remaining_limit] |
|
|
|
for chunk in xml_chunks_to_process: |
|
parsed_result = self._parse_xml_tool_call(chunk) |
|
if parsed_result: |
|
tool_call, parsing_details = parsed_result |
|
|
|
if not any(exec['tool_call'] == tool_call for exec in pending_tool_executions): |
|
final_tool_calls_to_process.append(tool_call) |
|
parsed_xml_data.append({'tool_call': tool_call, 'parsing_details': parsing_details}) |
|
|
|
|
|
all_tool_data_map = {} |
|
|
|
native_tool_index = 0 |
|
if config.native_tool_calling and complete_native_tool_calls: |
|
for tc in complete_native_tool_calls: |
|
|
|
|
|
exec_tool_call = { |
|
"function_name": tc["function"]["name"], |
|
"arguments": tc["function"]["arguments"], |
|
"id": tc["id"] |
|
} |
|
all_tool_data_map[native_tool_index] = {"tool_call": exec_tool_call, "parsing_details": None} |
|
native_tool_index += 1 |
|
|
|
|
|
xml_tool_index_start = native_tool_index |
|
for idx, item in enumerate(parsed_xml_data): |
|
all_tool_data_map[xml_tool_index_start + idx] = item |
|
|
|
|
|
tool_results_map = {} |
|
|
|
|
|
if config.execute_on_stream and tool_results_buffer: |
|
logger.info(f"Processing {len(tool_results_buffer)} buffered tool results") |
|
for tool_call, result, tool_idx, context in tool_results_buffer: |
|
if last_assistant_message_object: context.assistant_message_id = last_assistant_message_object['message_id'] |
|
tool_results_map[tool_idx] = (tool_call, result, context) |
|
|
|
|
|
elif final_tool_calls_to_process and not config.execute_on_stream: |
|
logger.info(f"Executing {len(final_tool_calls_to_process)} tools ({config.tool_execution_strategy}) after stream") |
|
results_list = await self._execute_tools(final_tool_calls_to_process, config.tool_execution_strategy) |
|
current_tool_idx = 0 |
|
for tc, res in results_list: |
|
|
|
if current_tool_idx in all_tool_data_map: |
|
tool_data = all_tool_data_map[current_tool_idx] |
|
context = self._create_tool_context( |
|
tc, current_tool_idx, |
|
last_assistant_message_object['message_id'] if last_assistant_message_object else None, |
|
tool_data.get('parsing_details') |
|
) |
|
context.result = res |
|
tool_results_map[current_tool_idx] = (tc, res, context) |
|
else: logger.warning(f"Could not map result for tool index {current_tool_idx}") |
|
current_tool_idx += 1 |
|
|
|
|
|
if tool_results_map: |
|
logger.info(f"Saving and yielding {len(tool_results_map)} final tool result messages") |
|
for tool_idx in sorted(tool_results_map.keys()): |
|
tool_call, result, context = tool_results_map[tool_idx] |
|
context.result = result |
|
if not context.assistant_message_id and last_assistant_message_object: |
|
context.assistant_message_id = last_assistant_message_object['message_id'] |
|
|
|
|
|
if not config.execute_on_stream and tool_idx not in yielded_tool_indices: |
|
started_msg_obj = await self._yield_and_save_tool_started(context, thread_id, thread_run_id) |
|
if started_msg_obj: yield started_msg_obj |
|
yielded_tool_indices.add(tool_idx) |
|
|
|
|
|
saved_tool_result_object = await self._add_tool_result( |
|
thread_id, tool_call, result, config.xml_adding_strategy, |
|
context.assistant_message_id, context.parsing_details |
|
) |
|
|
|
|
|
completed_msg_obj = await self._yield_and_save_tool_completed( |
|
context, |
|
saved_tool_result_object['message_id'] if saved_tool_result_object else None, |
|
thread_id, thread_run_id |
|
) |
|
if completed_msg_obj: yield completed_msg_obj |
|
|
|
|
|
|
|
if saved_tool_result_object: |
|
tool_result_message_objects[tool_idx] = saved_tool_result_object |
|
yield saved_tool_result_object |
|
else: |
|
logger.error(f"Failed to save tool result for index {tool_idx}, not yielding result message.") |
|
|
|
|
|
|
|
if last_assistant_message_object: |
|
try: |
|
|
|
final_cost = completion_cost( |
|
model=llm_model, |
|
messages=prompt_messages, |
|
completion=accumulated_content |
|
) |
|
if final_cost is not None and final_cost > 0: |
|
logger.info(f"Calculated final cost for stream: {final_cost}") |
|
await self.add_message( |
|
thread_id=thread_id, |
|
type="cost", |
|
content={"cost": final_cost}, |
|
is_llm_message=False, |
|
metadata={"thread_run_id": thread_run_id} |
|
) |
|
logger.info(f"Cost message saved for stream: {final_cost}") |
|
else: |
|
logger.info("Stream cost calculation resulted in zero or None, not storing cost message.") |
|
except Exception as e: |
|
logger.error(f"Error calculating final cost for stream: {str(e)}") |
|
|
|
|
|
|
|
if finish_reason and finish_reason != "xml_tool_limit_reached": |
|
finish_content = {"status_type": "finish", "finish_reason": finish_reason} |
|
finish_msg_obj = await self.add_message( |
|
thread_id=thread_id, type="status", content=finish_content, |
|
is_llm_message=False, metadata={"thread_run_id": thread_run_id} |
|
) |
|
if finish_msg_obj: yield finish_msg_obj |
|
|
|
except Exception as e: |
|
logger.error(f"Error processing stream: {str(e)}", exc_info=True) |
|
|
|
err_content = {"role": "system", "status_type": "error", "message": str(e)} |
|
err_msg_obj = await self.add_message( |
|
thread_id=thread_id, type="status", content=err_content, |
|
is_llm_message=False, metadata={"thread_run_id": thread_run_id if 'thread_run_id' in locals() else None} |
|
) |
|
if err_msg_obj: yield err_msg_obj |
|
|
|
finally: |
|
|
|
end_content = {"status_type": "thread_run_end"} |
|
end_msg_obj = await self.add_message( |
|
thread_id=thread_id, type="status", content=end_content, |
|
is_llm_message=False, metadata={"thread_run_id": thread_run_id if 'thread_run_id' in locals() else None} |
|
) |
|
if end_msg_obj: yield end_msg_obj |
|
|
|
async def process_non_streaming_response( |
|
self, |
|
llm_response: Any, |
|
thread_id: str, |
|
prompt_messages: List[Dict[str, Any]], |
|
llm_model: str, |
|
config: ProcessorConfig = ProcessorConfig() |
|
) -> AsyncGenerator[Dict[str, Any], None]: |
|
"""Process a non-streaming LLM response, handling tool calls and execution. |
|
|
|
Args: |
|
llm_response: Response from the LLM |
|
thread_id: ID of the conversation thread |
|
prompt_messages: List of messages sent to the LLM (the prompt) |
|
llm_model: The name of the LLM model used |
|
config: Configuration for parsing and execution |
|
|
|
Yields: |
|
Complete message objects matching the DB schema. |
|
""" |
|
content = "" |
|
thread_run_id = str(uuid.uuid4()) |
|
all_tool_data = [] |
|
tool_index = 0 |
|
assistant_message_object = None |
|
tool_result_message_objects = {} |
|
finish_reason = None |
|
native_tool_calls_for_message = [] |
|
|
|
try: |
|
|
|
start_content = {"status_type": "thread_run_start", "thread_run_id": thread_run_id} |
|
start_msg_obj = await self.add_message( |
|
thread_id=thread_id, type="status", content=start_content, |
|
is_llm_message=False, metadata={"thread_run_id": thread_run_id} |
|
) |
|
if start_msg_obj: yield start_msg_obj |
|
|
|
|
|
if hasattr(llm_response, 'choices') and llm_response.choices: |
|
if hasattr(llm_response.choices[0], 'finish_reason'): |
|
finish_reason = llm_response.choices[0].finish_reason |
|
logger.info(f"Non-streaming finish_reason: {finish_reason}") |
|
response_message = llm_response.choices[0].message if hasattr(llm_response.choices[0], 'message') else None |
|
if response_message: |
|
if hasattr(response_message, 'content') and response_message.content: |
|
content = response_message.content |
|
if config.xml_tool_calling: |
|
parsed_xml_data = self._parse_xml_tool_calls(content) |
|
if config.max_xml_tool_calls > 0 and len(parsed_xml_data) > config.max_xml_tool_calls: |
|
|
|
|
|
if parsed_xml_data: |
|
xml_chunks = self._extract_xml_chunks(content)[:config.max_xml_tool_calls] |
|
if xml_chunks: |
|
last_chunk = xml_chunks[-1] |
|
last_chunk_pos = content.find(last_chunk) |
|
if last_chunk_pos >= 0: content = content[:last_chunk_pos + len(last_chunk)] |
|
parsed_xml_data = parsed_xml_data[:config.max_xml_tool_calls] |
|
finish_reason = "xml_tool_limit_reached" |
|
all_tool_data.extend(parsed_xml_data) |
|
|
|
if config.native_tool_calling and hasattr(response_message, 'tool_calls') and response_message.tool_calls: |
|
for tool_call in response_message.tool_calls: |
|
if hasattr(tool_call, 'function'): |
|
exec_tool_call = { |
|
"function_name": tool_call.function.name, |
|
"arguments": json.loads(tool_call.function.arguments) if isinstance(tool_call.function.arguments, str) else tool_call.function.arguments, |
|
"id": tool_call.id if hasattr(tool_call, 'id') else str(uuid.uuid4()) |
|
} |
|
all_tool_data.append({"tool_call": exec_tool_call, "parsing_details": None}) |
|
native_tool_calls_for_message.append({ |
|
"id": exec_tool_call["id"], "type": "function", |
|
"function": { |
|
"name": tool_call.function.name, |
|
"arguments": tool_call.function.arguments if isinstance(tool_call.function.arguments, str) else json.dumps(tool_call.function.arguments) |
|
} |
|
}) |
|
|
|
|
|
|
|
message_data = {"role": "assistant", "content": content, "tool_calls": native_tool_calls_for_message or None} |
|
assistant_message_object = await self.add_message( |
|
thread_id=thread_id, type="assistant", content=message_data, |
|
is_llm_message=True, metadata={"thread_run_id": thread_run_id} |
|
) |
|
if assistant_message_object: |
|
yield assistant_message_object |
|
else: |
|
logger.error(f"Failed to save non-streaming assistant message for thread {thread_id}") |
|
err_content = {"role": "system", "status_type": "error", "message": "Failed to save assistant message"} |
|
err_msg_obj = await self.add_message( |
|
thread_id=thread_id, type="status", content=err_content, |
|
is_llm_message=False, metadata={"thread_run_id": thread_run_id} |
|
) |
|
if err_msg_obj: yield err_msg_obj |
|
|
|
|
|
if assistant_message_object: |
|
try: |
|
|
|
final_cost = None |
|
if hasattr(llm_response, '_hidden_params') and 'response_cost' in llm_response._hidden_params and llm_response._hidden_params['response_cost'] is not None and llm_response._hidden_params['response_cost'] != 0.0: |
|
final_cost = llm_response._hidden_params['response_cost'] |
|
logger.info(f"Using response_cost from _hidden_params: {final_cost}") |
|
|
|
if final_cost is None: |
|
logger.info("Calculating cost using completion_cost function.") |
|
|
|
final_cost = completion_cost( |
|
completion_response=llm_response, |
|
model=llm_model, |
|
|
|
) |
|
|
|
if final_cost is not None and final_cost > 0: |
|
logger.info(f"Calculated final cost for non-stream: {final_cost}") |
|
await self.add_message( |
|
thread_id=thread_id, |
|
type="cost", |
|
content={"cost": final_cost}, |
|
is_llm_message=False, |
|
metadata={"thread_run_id": thread_run_id} |
|
) |
|
logger.info(f"Cost message saved for non-stream: {final_cost}") |
|
else: |
|
logger.info("Non-stream cost calculation resulted in zero or None, not storing cost message.") |
|
|
|
except Exception as e: |
|
logger.error(f"Error calculating final cost for non-stream: {str(e)}") |
|
|
|
|
|
tool_calls_to_execute = [item['tool_call'] for item in all_tool_data] |
|
if config.execute_tools and tool_calls_to_execute: |
|
logger.info(f"Executing {len(tool_calls_to_execute)} tools with strategy: {config.tool_execution_strategy}") |
|
tool_results = await self._execute_tools(tool_calls_to_execute, config.tool_execution_strategy) |
|
|
|
for i, (returned_tool_call, result) in enumerate(tool_results): |
|
original_data = all_tool_data[i] |
|
tool_call_from_data = original_data['tool_call'] |
|
parsing_details = original_data['parsing_details'] |
|
current_assistant_id = assistant_message_object['message_id'] if assistant_message_object else None |
|
|
|
context = self._create_tool_context( |
|
tool_call_from_data, tool_index, current_assistant_id, parsing_details |
|
) |
|
context.result = result |
|
|
|
|
|
started_msg_obj = await self._yield_and_save_tool_started(context, thread_id, thread_run_id) |
|
if started_msg_obj: yield started_msg_obj |
|
|
|
|
|
saved_tool_result_object = await self._add_tool_result( |
|
thread_id, tool_call_from_data, result, config.xml_adding_strategy, |
|
current_assistant_id, parsing_details |
|
) |
|
|
|
|
|
completed_msg_obj = await self._yield_and_save_tool_completed( |
|
context, |
|
saved_tool_result_object['message_id'] if saved_tool_result_object else None, |
|
thread_id, thread_run_id |
|
) |
|
if completed_msg_obj: yield completed_msg_obj |
|
|
|
|
|
if saved_tool_result_object: |
|
tool_result_message_objects[tool_index] = saved_tool_result_object |
|
yield saved_tool_result_object |
|
else: |
|
logger.error(f"Failed to save tool result for index {tool_index}") |
|
|
|
tool_index += 1 |
|
|
|
|
|
if finish_reason: |
|
finish_content = {"status_type": "finish", "finish_reason": finish_reason} |
|
finish_msg_obj = await self.add_message( |
|
thread_id=thread_id, type="status", content=finish_content, |
|
is_llm_message=False, metadata={"thread_run_id": thread_run_id} |
|
) |
|
if finish_msg_obj: yield finish_msg_obj |
|
|
|
except Exception as e: |
|
logger.error(f"Error processing non-streaming response: {str(e)}", exc_info=True) |
|
|
|
err_content = {"role": "system", "status_type": "error", "message": str(e)} |
|
err_msg_obj = await self.add_message( |
|
thread_id=thread_id, type="status", content=err_content, |
|
is_llm_message=False, metadata={"thread_run_id": thread_run_id if 'thread_run_id' in locals() else None} |
|
) |
|
if err_msg_obj: yield err_msg_obj |
|
|
|
finally: |
|
|
|
end_content = {"status_type": "thread_run_end"} |
|
end_msg_obj = await self.add_message( |
|
thread_id=thread_id, type="status", content=end_content, |
|
is_llm_message=False, metadata={"thread_run_id": thread_run_id if 'thread_run_id' in locals() else None} |
|
) |
|
if end_msg_obj: yield end_msg_obj |
|
|
|
|
|
def _extract_tag_content(self, xml_chunk: str, tag_name: str) -> Tuple[Optional[str], Optional[str]]: |
|
"""Extract content between opening and closing tags, handling nested tags.""" |
|
start_tag = f'<{tag_name}' |
|
end_tag = f'</{tag_name}>' |
|
|
|
try: |
|
|
|
start_pos = xml_chunk.find(start_tag) |
|
if start_pos == -1: |
|
return None, xml_chunk |
|
|
|
|
|
tag_end = xml_chunk.find('>', start_pos) |
|
if tag_end == -1: |
|
return None, xml_chunk |
|
|
|
|
|
content_start = tag_end + 1 |
|
nesting_level = 1 |
|
pos = content_start |
|
|
|
while nesting_level > 0 and pos < len(xml_chunk): |
|
next_start = xml_chunk.find(start_tag, pos) |
|
next_end = xml_chunk.find(end_tag, pos) |
|
|
|
if next_end == -1: |
|
return None, xml_chunk |
|
|
|
if next_start != -1 and next_start < next_end: |
|
nesting_level += 1 |
|
pos = next_start + len(start_tag) |
|
else: |
|
nesting_level -= 1 |
|
if nesting_level == 0: |
|
content = xml_chunk[content_start:next_end] |
|
remaining = xml_chunk[next_end + len(end_tag):] |
|
return content, remaining |
|
else: |
|
pos = next_end + len(end_tag) |
|
|
|
return None, xml_chunk |
|
|
|
except Exception as e: |
|
logger.error(f"Error extracting tag content: {e}") |
|
return None, xml_chunk |
|
|
|
def _extract_attribute(self, opening_tag: str, attr_name: str) -> Optional[str]: |
|
"""Extract attribute value from opening tag.""" |
|
try: |
|
|
|
patterns = [ |
|
fr'{attr_name}="([^"]*)"', |
|
fr"{attr_name}='([^']*)'", |
|
fr'{attr_name}=([^\s/>;]+)' |
|
] |
|
|
|
for pattern in patterns: |
|
match = re.search(pattern, opening_tag) |
|
if match: |
|
value = match.group(1) |
|
|
|
value = value.replace('"', '"').replace(''', "'") |
|
value = value.replace('<', '<').replace('>', '>') |
|
value = value.replace('&', '&') |
|
return value |
|
|
|
return None |
|
|
|
except Exception as e: |
|
logger.error(f"Error extracting attribute: {e}") |
|
return None |
|
|
|
def _extract_xml_chunks(self, content: str) -> List[str]: |
|
"""Extract complete XML chunks using start and end pattern matching.""" |
|
chunks = [] |
|
pos = 0 |
|
|
|
try: |
|
while pos < len(content): |
|
|
|
next_tag_start = -1 |
|
current_tag = None |
|
|
|
|
|
for tag_name in self.tool_registry.xml_tools.keys(): |
|
start_pattern = f'<{tag_name}' |
|
tag_pos = content.find(start_pattern, pos) |
|
|
|
if tag_pos != -1 and (next_tag_start == -1 or tag_pos < next_tag_start): |
|
next_tag_start = tag_pos |
|
current_tag = tag_name |
|
|
|
if next_tag_start == -1 or not current_tag: |
|
break |
|
|
|
|
|
end_pattern = f'</{current_tag}>' |
|
tag_stack = [] |
|
chunk_start = next_tag_start |
|
current_pos = next_tag_start |
|
|
|
while current_pos < len(content): |
|
|
|
next_start = content.find(f'<{current_tag}', current_pos + 1) |
|
next_end = content.find(end_pattern, current_pos) |
|
|
|
if next_end == -1: |
|
break |
|
|
|
if next_start != -1 and next_start < next_end: |
|
|
|
tag_stack.append(next_start) |
|
current_pos = next_start + 1 |
|
else: |
|
|
|
if not tag_stack: |
|
chunk_end = next_end + len(end_pattern) |
|
chunk = content[chunk_start:chunk_end] |
|
chunks.append(chunk) |
|
pos = chunk_end |
|
break |
|
else: |
|
|
|
tag_stack.pop() |
|
current_pos = next_end + 1 |
|
|
|
if current_pos >= len(content): |
|
break |
|
|
|
pos = max(pos + 1, current_pos) |
|
|
|
except Exception as e: |
|
logger.error(f"Error extracting XML chunks: {e}") |
|
logger.error(f"Content was: {content}") |
|
|
|
return chunks |
|
|
|
def _parse_xml_tool_call(self, xml_chunk: str) -> Optional[Tuple[Dict[str, Any], Dict[str, Any]]]: |
|
"""Parse XML chunk into tool call format and return parsing details. |
|
|
|
Returns: |
|
Tuple of (tool_call, parsing_details) or None if parsing fails. |
|
- tool_call: Dict with 'function_name', 'xml_tag_name', 'arguments' |
|
- parsing_details: Dict with 'attributes', 'elements', 'text_content', 'root_content' |
|
""" |
|
try: |
|
|
|
tag_match = re.match(r'<([^\s>]+)', xml_chunk) |
|
if not tag_match: |
|
logger.error(f"No tag found in XML chunk: {xml_chunk}") |
|
return None |
|
|
|
|
|
xml_tag_name = tag_match.group(1) |
|
logger.info(f"Found XML tag: {xml_tag_name}") |
|
|
|
|
|
tool_info = self.tool_registry.get_xml_tool(xml_tag_name) |
|
if not tool_info or not tool_info['schema'].xml_schema: |
|
logger.error(f"No tool or schema found for tag: {xml_tag_name}") |
|
return None |
|
|
|
|
|
function_name = tool_info['method'] |
|
|
|
schema = tool_info['schema'].xml_schema |
|
params = {} |
|
remaining_chunk = xml_chunk |
|
|
|
|
|
parsing_details = { |
|
"attributes": {}, |
|
"elements": {}, |
|
"text_content": None, |
|
"root_content": None, |
|
"raw_chunk": xml_chunk |
|
} |
|
|
|
|
|
|
|
for mapping in schema.mappings: |
|
try: |
|
if mapping.node_type == "attribute": |
|
|
|
opening_tag = remaining_chunk.split('>', 1)[0] |
|
value = self._extract_attribute(opening_tag, mapping.param_name) |
|
if value is not None: |
|
params[mapping.param_name] = value |
|
parsing_details["attributes"][mapping.param_name] = value |
|
logger.info(f"Found attribute {mapping.param_name}: {value}") |
|
|
|
elif mapping.node_type == "element": |
|
|
|
content, remaining_chunk = self._extract_tag_content(remaining_chunk, mapping.path) |
|
if content is not None: |
|
params[mapping.param_name] = content.strip() |
|
parsing_details["elements"][mapping.param_name] = content.strip() |
|
logger.info(f"Found element {mapping.param_name}: {content.strip()}") |
|
|
|
elif mapping.node_type == "text": |
|
|
|
content, _ = self._extract_tag_content(remaining_chunk, xml_tag_name) |
|
if content is not None: |
|
params[mapping.param_name] = content.strip() |
|
parsing_details["text_content"] = content.strip() |
|
logger.info(f"Found text content for {mapping.param_name}: {content.strip()}") |
|
|
|
elif mapping.node_type == "content": |
|
|
|
content, _ = self._extract_tag_content(remaining_chunk, xml_tag_name) |
|
if content is not None: |
|
params[mapping.param_name] = content.strip() |
|
parsing_details["root_content"] = content.strip() |
|
logger.info(f"Found root content for {mapping.param_name}") |
|
|
|
except Exception as e: |
|
logger.error(f"Error processing mapping {mapping}: {e}") |
|
continue |
|
|
|
|
|
missing = [mapping.param_name for mapping in schema.mappings if mapping.required and mapping.param_name not in params] |
|
if missing: |
|
logger.error(f"Missing required parameters: {missing}") |
|
logger.error(f"Current params: {params}") |
|
logger.error(f"XML chunk: {xml_chunk}") |
|
return None |
|
|
|
|
|
tool_call = { |
|
"function_name": function_name, |
|
"xml_tag_name": xml_tag_name, |
|
"arguments": params |
|
} |
|
|
|
logger.debug(f"Created tool call: {tool_call}") |
|
return tool_call, parsing_details |
|
|
|
except Exception as e: |
|
logger.error(f"Error parsing XML chunk: {e}") |
|
logger.error(f"XML chunk was: {xml_chunk}") |
|
return None |
|
|
|
def _parse_xml_tool_calls(self, content: str) -> List[Dict[str, Any]]: |
|
"""Parse XML tool calls from content string. |
|
|
|
Returns: |
|
List of dictionaries, each containing {'tool_call': ..., 'parsing_details': ...} |
|
""" |
|
parsed_data = [] |
|
|
|
try: |
|
xml_chunks = self._extract_xml_chunks(content) |
|
|
|
for xml_chunk in xml_chunks: |
|
result = self._parse_xml_tool_call(xml_chunk) |
|
if result: |
|
tool_call, parsing_details = result |
|
parsed_data.append({ |
|
"tool_call": tool_call, |
|
"parsing_details": parsing_details |
|
}) |
|
|
|
except Exception as e: |
|
logger.error(f"Error parsing XML tool calls: {e}", exc_info=True) |
|
|
|
return parsed_data |
|
|
|
|
|
async def _execute_tool(self, tool_call: Dict[str, Any]) -> ToolResult: |
|
"""Execute a single tool call and return the result.""" |
|
try: |
|
function_name = tool_call["function_name"] |
|
arguments = tool_call["arguments"] |
|
|
|
logger.info(f"Executing tool: {function_name} with arguments: {arguments}") |
|
|
|
if isinstance(arguments, str): |
|
try: |
|
arguments = json.loads(arguments) |
|
except json.JSONDecodeError: |
|
arguments = {"text": arguments} |
|
|
|
|
|
available_functions = self.tool_registry.get_available_functions() |
|
|
|
|
|
tool_fn = available_functions.get(function_name) |
|
if not tool_fn: |
|
logger.error(f"Tool function '{function_name}' not found in registry") |
|
return ToolResult(success=False, output=f"Tool function '{function_name}' not found") |
|
|
|
logger.debug(f"Found tool function for '{function_name}', executing...") |
|
result = await tool_fn(**arguments) |
|
logger.info(f"Tool execution complete: {function_name} -> {result}") |
|
return result |
|
except Exception as e: |
|
logger.error(f"Error executing tool {tool_call['function_name']}: {str(e)}", exc_info=True) |
|
return ToolResult(success=False, output=f"Error executing tool: {str(e)}") |
|
|
|
async def _execute_tools( |
|
self, |
|
tool_calls: List[Dict[str, Any]], |
|
execution_strategy: ToolExecutionStrategy = "sequential" |
|
) -> List[Tuple[Dict[str, Any], ToolResult]]: |
|
"""Execute tool calls with the specified strategy. |
|
|
|
This is the main entry point for tool execution. It dispatches to the appropriate |
|
execution method based on the provided strategy. |
|
|
|
Args: |
|
tool_calls: List of tool calls to execute |
|
execution_strategy: Strategy for executing tools: |
|
- "sequential": Execute tools one after another, waiting for each to complete |
|
- "parallel": Execute all tools simultaneously for better performance |
|
|
|
Returns: |
|
List of tuples containing the original tool call and its result |
|
""" |
|
logger.info(f"Executing {len(tool_calls)} tools with strategy: {execution_strategy}") |
|
|
|
if execution_strategy == "sequential": |
|
return await self._execute_tools_sequentially(tool_calls) |
|
elif execution_strategy == "parallel": |
|
return await self._execute_tools_in_parallel(tool_calls) |
|
else: |
|
logger.warning(f"Unknown execution strategy: {execution_strategy}, falling back to sequential") |
|
return await self._execute_tools_sequentially(tool_calls) |
|
|
|
async def _execute_tools_sequentially(self, tool_calls: List[Dict[str, Any]]) -> List[Tuple[Dict[str, Any], ToolResult]]: |
|
"""Execute tool calls sequentially and return results. |
|
|
|
This method executes tool calls one after another, waiting for each tool to complete |
|
before starting the next one. This is useful when tools have dependencies on each other. |
|
|
|
Args: |
|
tool_calls: List of tool calls to execute |
|
|
|
Returns: |
|
List of tuples containing the original tool call and its result |
|
""" |
|
if not tool_calls: |
|
return [] |
|
|
|
try: |
|
tool_names = [t.get('function_name', 'unknown') for t in tool_calls] |
|
logger.info(f"Executing {len(tool_calls)} tools sequentially: {tool_names}") |
|
|
|
results = [] |
|
for index, tool_call in enumerate(tool_calls): |
|
tool_name = tool_call.get('function_name', 'unknown') |
|
logger.debug(f"Executing tool {index+1}/{len(tool_calls)}: {tool_name}") |
|
|
|
try: |
|
result = await self._execute_tool(tool_call) |
|
results.append((tool_call, result)) |
|
logger.debug(f"Completed tool {tool_name} with success={result.success}") |
|
except Exception as e: |
|
logger.error(f"Error executing tool {tool_name}: {str(e)}") |
|
error_result = ToolResult(success=False, output=f"Error executing tool: {str(e)}") |
|
results.append((tool_call, error_result)) |
|
|
|
logger.info(f"Sequential execution completed for {len(tool_calls)} tools") |
|
return results |
|
|
|
except Exception as e: |
|
logger.error(f"Error in sequential tool execution: {str(e)}", exc_info=True) |
|
|
|
completed_tool_names = [r[0].get('function_name', 'unknown') for r in results] if 'results' in locals() else [] |
|
remaining_tools = [t for t in tool_calls if t.get('function_name', 'unknown') not in completed_tool_names] |
|
|
|
|
|
error_results = [(tool, ToolResult(success=False, output=f"Execution error: {str(e)}")) |
|
for tool in remaining_tools] |
|
|
|
return (results if 'results' in locals() else []) + error_results |
|
|
|
async def _execute_tools_in_parallel(self, tool_calls: List[Dict[str, Any]]) -> List[Tuple[Dict[str, Any], ToolResult]]: |
|
"""Execute tool calls in parallel and return results. |
|
|
|
This method executes all tool calls simultaneously using asyncio.gather, which |
|
can significantly improve performance when executing multiple independent tools. |
|
|
|
Args: |
|
tool_calls: List of tool calls to execute |
|
|
|
Returns: |
|
List of tuples containing the original tool call and its result |
|
""" |
|
if not tool_calls: |
|
return [] |
|
|
|
try: |
|
tool_names = [t.get('function_name', 'unknown') for t in tool_calls] |
|
logger.info(f"Executing {len(tool_calls)} tools in parallel: {tool_names}") |
|
|
|
|
|
tasks = [self._execute_tool(tool_call) for tool_call in tool_calls] |
|
|
|
|
|
results = await asyncio.gather(*tasks, return_exceptions=True) |
|
|
|
|
|
processed_results = [] |
|
for i, (tool_call, result) in enumerate(zip(tool_calls, results)): |
|
if isinstance(result, Exception): |
|
logger.error(f"Error executing tool {tool_call.get('function_name', 'unknown')}: {str(result)}") |
|
|
|
error_result = ToolResult(success=False, output=f"Error executing tool: {str(result)}") |
|
processed_results.append((tool_call, error_result)) |
|
else: |
|
processed_results.append((tool_call, result)) |
|
|
|
logger.info(f"Parallel execution completed for {len(tool_calls)} tools") |
|
return processed_results |
|
|
|
except Exception as e: |
|
logger.error(f"Error in parallel tool execution: {str(e)}", exc_info=True) |
|
|
|
return [(tool_call, ToolResult(success=False, output=f"Execution error: {str(e)}")) |
|
for tool_call in tool_calls] |
|
|
|
async def _add_tool_result( |
|
self, |
|
thread_id: str, |
|
tool_call: Dict[str, Any], |
|
result: ToolResult, |
|
strategy: Union[XmlAddingStrategy, str] = "assistant_message", |
|
assistant_message_id: Optional[str] = None, |
|
parsing_details: Optional[Dict[str, Any]] = None |
|
) -> Optional[str]: |
|
"""Add a tool result to the conversation thread based on the specified format. |
|
|
|
This method formats tool results and adds them to the conversation history, |
|
making them visible to the LLM in subsequent interactions. Results can be |
|
added either as native tool messages (OpenAI format) or as XML-wrapped content |
|
with a specified role (user or assistant). |
|
|
|
Args: |
|
thread_id: ID of the conversation thread |
|
tool_call: The original tool call that produced this result |
|
result: The result from the tool execution |
|
strategy: How to add XML tool results to the conversation |
|
("user_message", "assistant_message", or "inline_edit") |
|
assistant_message_id: ID of the assistant message that generated this tool call |
|
parsing_details: Detailed parsing info for XML calls (attributes, elements, etc.) |
|
""" |
|
try: |
|
message_id = None |
|
|
|
|
|
metadata = {} |
|
if assistant_message_id: |
|
metadata["assistant_message_id"] = assistant_message_id |
|
logger.info(f"Linking tool result to assistant message: {assistant_message_id}") |
|
|
|
|
|
if parsing_details: |
|
metadata["parsing_details"] = parsing_details |
|
logger.info("Adding parsing_details to tool result metadata") |
|
|
|
|
|
|
|
if "id" in tool_call: |
|
|
|
function_name = tool_call.get("function_name", "") |
|
|
|
|
|
if isinstance(result, str): |
|
content = result |
|
elif hasattr(result, 'output'): |
|
|
|
if isinstance(result.output, dict) or isinstance(result.output, list): |
|
|
|
content = json.dumps(result.output) |
|
else: |
|
|
|
content = str(result.output) |
|
else: |
|
|
|
content = str(result) |
|
|
|
logger.info(f"Formatted tool result content: {content[:100]}...") |
|
|
|
|
|
tool_message = { |
|
"role": "tool", |
|
"tool_call_id": tool_call["id"], |
|
"name": function_name, |
|
"content": content |
|
} |
|
|
|
logger.info(f"Adding native tool result for tool_call_id={tool_call['id']} with role=tool") |
|
|
|
|
|
|
|
message_id = await self.add_message( |
|
thread_id=thread_id, |
|
type="tool", |
|
content=tool_message, |
|
is_llm_message=True, |
|
metadata=metadata |
|
) |
|
return message_id |
|
|
|
|
|
|
|
result_role = "user" if strategy == "user_message" else "assistant" |
|
|
|
|
|
context = self._create_tool_context(tool_call, 0, assistant_message_id, parsing_details) |
|
context.result = result |
|
|
|
|
|
content = self._format_xml_tool_result(tool_call, result) |
|
|
|
|
|
|
|
result_message = { |
|
"role": result_role, |
|
"content": content |
|
} |
|
message_id = await self.add_message( |
|
thread_id=thread_id, |
|
type="tool", |
|
content=result_message, |
|
is_llm_message=True, |
|
metadata=metadata |
|
) |
|
return message_id |
|
except Exception as e: |
|
logger.error(f"Error adding tool result: {str(e)}", exc_info=True) |
|
|
|
try: |
|
fallback_message = { |
|
"role": "user", |
|
"content": str(result) |
|
} |
|
message_id = await self.add_message( |
|
thread_id=thread_id, |
|
type="tool", |
|
content=fallback_message, |
|
is_llm_message=True, |
|
metadata={"assistant_message_id": assistant_message_id} if assistant_message_id else {} |
|
) |
|
return message_id |
|
except Exception as e2: |
|
logger.error(f"Failed even with fallback message: {str(e2)}", exc_info=True) |
|
return None |
|
|
|
def _format_xml_tool_result(self, tool_call: Dict[str, Any], result: ToolResult) -> str: |
|
"""Format a tool result wrapped in a <tool_result> tag. |
|
|
|
Args: |
|
tool_call: The tool call that was executed |
|
result: The result of the tool execution |
|
|
|
Returns: |
|
String containing the formatted result wrapped in <tool_result> tag |
|
""" |
|
|
|
if "xml_tag_name" in tool_call: |
|
xml_tag_name = tool_call["xml_tag_name"] |
|
return f"<tool_result> <{xml_tag_name}> {str(result)} </{xml_tag_name}> </tool_result>" |
|
|
|
|
|
function_name = tool_call["function_name"] |
|
return f"Result for {function_name}: {str(result)}" |
|
|
|
def _create_tool_context(self, tool_call: Dict[str, Any], tool_index: int, assistant_message_id: Optional[str] = None, parsing_details: Optional[Dict[str, Any]] = None) -> ToolExecutionContext: |
|
"""Create a tool execution context with display name and parsing details populated.""" |
|
context = ToolExecutionContext( |
|
tool_call=tool_call, |
|
tool_index=tool_index, |
|
assistant_message_id=assistant_message_id, |
|
parsing_details=parsing_details |
|
) |
|
|
|
|
|
if "xml_tag_name" in tool_call: |
|
context.xml_tag_name = tool_call["xml_tag_name"] |
|
context.function_name = tool_call.get("function_name", tool_call["xml_tag_name"]) |
|
else: |
|
|
|
context.function_name = tool_call.get("function_name", "unknown") |
|
context.xml_tag_name = None |
|
|
|
return context |
|
|
|
async def _yield_and_save_tool_started(self, context: ToolExecutionContext, thread_id: str, thread_run_id: str) -> Optional[Dict[str, Any]]: |
|
"""Formats, saves, and returns a tool started status message.""" |
|
tool_name = context.xml_tag_name or context.function_name |
|
content = { |
|
"role": "assistant", "status_type": "tool_started", |
|
"function_name": context.function_name, "xml_tag_name": context.xml_tag_name, |
|
"message": f"Starting execution of {tool_name}", "tool_index": context.tool_index, |
|
"tool_call_id": context.tool_call.get("id") |
|
} |
|
metadata = {"thread_run_id": thread_run_id} |
|
saved_message_obj = await self.add_message( |
|
thread_id=thread_id, type="status", content=content, is_llm_message=False, metadata=metadata |
|
) |
|
return saved_message_obj |
|
|
|
async def _yield_and_save_tool_completed(self, context: ToolExecutionContext, tool_message_id: Optional[str], thread_id: str, thread_run_id: str) -> Optional[Dict[str, Any]]: |
|
"""Formats, saves, and returns a tool completed/failed status message.""" |
|
if not context.result: |
|
|
|
return await self._yield_and_save_tool_error(context, thread_id, thread_run_id) |
|
|
|
tool_name = context.xml_tag_name or context.function_name |
|
status_type = "tool_completed" if context.result.success else "tool_failed" |
|
message_text = f"Tool {tool_name} {'completed successfully' if context.result.success else 'failed'}" |
|
|
|
content = { |
|
"role": "assistant", "status_type": status_type, |
|
"function_name": context.function_name, "xml_tag_name": context.xml_tag_name, |
|
"message": message_text, "tool_index": context.tool_index, |
|
"tool_call_id": context.tool_call.get("id") |
|
} |
|
metadata = {"thread_run_id": thread_run_id} |
|
|
|
if context.result.success and tool_message_id: |
|
metadata["linked_tool_result_message_id"] = tool_message_id |
|
|
|
|
|
if context.function_name in ['ask', 'complete']: |
|
metadata["agent_should_terminate"] = True |
|
logger.info(f"Marking tool status for '{context.function_name}' with termination signal.") |
|
|
|
|
|
saved_message_obj = await self.add_message( |
|
thread_id=thread_id, type="status", content=content, is_llm_message=False, metadata=metadata |
|
) |
|
return saved_message_obj |
|
|
|
async def _yield_and_save_tool_error(self, context: ToolExecutionContext, thread_id: str, thread_run_id: str) -> Optional[Dict[str, Any]]: |
|
"""Formats, saves, and returns a tool error status message.""" |
|
error_msg = str(context.error) if context.error else "Unknown error during tool execution" |
|
tool_name = context.xml_tag_name or context.function_name |
|
content = { |
|
"role": "assistant", "status_type": "tool_error", |
|
"function_name": context.function_name, "xml_tag_name": context.xml_tag_name, |
|
"message": f"Error executing tool {tool_name}: {error_msg}", |
|
"tool_index": context.tool_index, |
|
"tool_call_id": context.tool_call.get("id") |
|
} |
|
metadata = {"thread_run_id": thread_run_id} |
|
|
|
saved_message_obj = await self.add_message( |
|
thread_id=thread_id, type="status", content=content, is_llm_message=False, metadata=metadata |
|
) |
|
return saved_message_obj |