File size: 6,024 Bytes
79d2a14 31f3e54 79d2a14 31f3e54 79d2a14 31f3e54 79d2a14 31f3e54 79d2a14 31f3e54 79d2a14 31f3e54 79d2a14 31f3e54 79d2a14 31f3e54 79d2a14 31f3e54 79d2a14 31f3e54 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 |
import gradio as gr
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch
from sklearn.metrics import classification_report, confusion_matrix, accuracy_score
import io
import base64
from textblob import TextBlob
from collections import defaultdict
from tabulate import tabulate
from transformers import pipeline
# Load the model and tokenizer
model_path = "./final_model"
tokenizer = AutoTokenizer.from_pretrained(model_path)
model = AutoModelForSequenceClassification.from_pretrained(model_path)
# Initialize the summarizer
summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
def predict_sentiment(text):
# Preprocess text
text = text.lower()
# Tokenize
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True)
# Get prediction
with torch.no_grad():
outputs = model(**inputs)
logits = outputs.logits
probabilities = torch.nn.functional.softmax(logits, dim=-1)
predicted_class = torch.argmax(probabilities, dim=-1).item()
# Map class to sentiment
sentiment_map = {0: "Negative", 1: "Neutral", 2: "Positive"}
sentiment = sentiment_map[predicted_class]
# Get probabilities
probs = probabilities[0].tolist()
prob_dict = {sentiment_map[i]: f"{prob*100:.2f}%" for i, prob in enumerate(probs)}
return sentiment, prob_dict
def analyze_sentiment(reviews):
"""Perform sentiment analysis on reviews"""
pros = defaultdict(int)
cons = defaultdict(int)
for review in reviews:
blob = TextBlob(str(review))
for sentence in blob.sentences:
polarity = sentence.sentiment.polarity
words = [word for word, tag in blob.tags
if tag in ('NN', 'NNS', 'JJ', 'JJR', 'JJS')]
if polarity > 0.3: # Positive
for word in words:
pros[word] += 1
elif polarity < -0.3: # Negative
for word in words:
cons[word] += 1
pros_sorted = [k for k, _ in sorted(pros.items(), key=lambda x: -x[1])] if pros else []
cons_sorted = [k for k, _ in sorted(cons.items(), key=lambda x: -x[1])] if cons else []
return pros_sorted, cons_sorted
def generate_category_summary(reviews_text):
"""Generate summary for a set of reviews"""
reviews = [r.strip() for r in reviews_text.split('\n') if r.strip()]
if not reviews:
return "Please enter at least one review."
# Analyze sentiment and get pros/cons
pros, cons = analyze_sentiment(reviews)
# Create summary text
summary_text = f"""
Review Analysis Summary:
PROS:
{', '.join(pros[:5]) if pros else 'No significant positive feedback'}
CONS:
{', '.join(cons[:5]) if cons else 'No major complaints'}
Based on {len(reviews)} reviews analyzed.
"""
# Generate concise summary using BART
if len(summary_text) > 100:
try:
generated_summary = summarizer(
summary_text,
max_length=150,
min_length=50,
do_sample=False,
truncation=True
)[0]['summary_text']
except Exception as e:
generated_summary = f"Error generating summary: {str(e)}"
else:
generated_summary = summary_text
return generated_summary
def analyze_reviews(reviews_text):
# Original sentiment analysis
df, plot_html = analyze_reviews_sentiment(reviews_text)
# Generate summary
summary = generate_category_summary(reviews_text)
return df, plot_html, summary
# Rename original analyze_reviews to analyze_reviews_sentiment
def analyze_reviews_sentiment(reviews_text):
# Original implementation
reviews = [r.strip() for r in reviews_text.split('\n') if r.strip()]
if not reviews:
return "Please enter at least one review.", None
results = []
for review in reviews:
sentiment, probs = predict_sentiment(review)
results.append({
'Review': review,
'Sentiment': sentiment,
'Confidence': probs
})
df = pd.DataFrame(results)
plt.figure(figsize=(10, 6))
sentiment_counts = df['Sentiment'].value_counts()
plt.bar(sentiment_counts.index, sentiment_counts.values)
plt.title('Sentiment Distribution')
plt.xlabel('Sentiment')
plt.ylabel('Count')
buf = io.BytesIO()
plt.savefig(buf, format='png')
buf.seek(0)
plot_base64 = base64.b64encode(buf.read()).decode('utf-8')
plt.close()
return df, f'<img src="data:image/png;base64,{plot_base64}" style="max-width:100%;">'
# Create Gradio interface
def create_interface():
with gr.Blocks() as demo:
gr.Markdown("# Review Analysis System")
with gr.Tab("Review Analysis"):
reviews_input = gr.Textbox(
label="Enter reviews (one per line)",
placeholder="Enter product reviews here...",
lines=5
)
analyze_button = gr.Button("Analyze Reviews")
with gr.Row():
with gr.Column():
sentiment_output = gr.Dataframe(
label="Sentiment Analysis Results"
)
plot_output = gr.HTML(label="Sentiment Distribution")
with gr.Column():
summary_output = gr.Textbox(
label="Review Summary",
lines=5
)
analyze_button.click(
analyze_reviews,
inputs=[reviews_input],
outputs=[sentiment_output, plot_output, summary_output]
)
return demo
# Create and launch the interface
demo = create_interface()
demo.launch() |