File size: 10,466 Bytes
79d2a14 4ae3359 79d2a14 31f3e54 b3ed9e6 79d2a14 4ae3359 79d2a14 d0aaf42 31f3e54 4ae3359 d0aaf42 b3ed9e6 d0aaf42 4ae3359 79d2a14 31f3e54 4ae3359 31f3e54 4ae3359 31f3e54 d0aaf42 31f3e54 79d2a14 31f3e54 b3ed9e6 31f3e54 b3ed9e6 31f3e54 79d2a14 31f3e54 4ae3359 31f3e54 4ae3359 b3ed9e6 4ae3359 79d2a14 31f3e54 79d2a14 31f3e54 b3ed9e6 31f3e54 79d2a14 31f3e54 79d2a14 31f3e54 79d2a14 b3ed9e6 31f3e54 4ae3359 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 |
import gradio as gr
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
import torch
from sklearn.metrics import classification_report, confusion_matrix, accuracy_score
import io
import base64
from textblob import TextBlob
from collections import defaultdict
from tabulate import tabulate
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.cluster import KMeans
# Load models and initialize components
model_path = "./final_model"
tokenizer = AutoTokenizer.from_pretrained(model_path)
model = AutoModelForSequenceClassification.from_pretrained(model_path)
# Initialize summarizer with a smaller model and TF weights
try:
summarizer = pipeline(
"summarization",
model="sshleifer/distilbart-cnn-6-6",
device=-1 # Use CPU
)
except Exception as e:
print(f"Error loading summarizer: {str(e)}")
summarizer = None
# Load dataset
def load_dataset():
try:
df = pd.read_csv("dataset.csv")
# Ensure required columns exist
required_columns = ['reviews.text', 'reviews.rating', 'name', 'categories']
if not all(col in df.columns for col in required_columns):
raise ValueError("Missing required columns in dataset.csv")
return df
except Exception as e:
print(f"Error loading dataset: {str(e)}")
return None
# Get initial summary
def get_initial_summary():
df = load_dataset()
if df is None:
return "Error: Could not load dataset.csv"
try:
# Generate summaries for all categories
summaries = generate_category_summaries(df)
# Convert summaries to HTML format for Gradio
html_output = []
for category, tables in summaries.items():
html_output.append(f"<h2>CATEGORY: {category}</h2>")
for table in tables:
html_output.append(f"<h3>{table['section']}</h3>")
# Convert table to HTML using tabulate
table_html = tabulate(
table['data'],
headers=table['headers'],
tablefmt="html",
stralign="left",
numalign="center"
)
# Add some CSS styling
styled_table = f"""
<style>
table {{
border-collapse: collapse;
margin: 15px 0;
width: 100%;
}}
th, td {{
padding: 8px;
border: 1px solid #ddd;
text-align: left;
}}
th {{
background-color: #f5f5f5;
}}
tr:nth-child(even) {{
background-color: #f9f9f9;
}}
</style>
{table_html}
"""
html_output.append(styled_table)
html_output.append("<hr>") # Add separator between categories
return "\n".join(html_output)
except Exception as e:
return f"Error generating initial summary: {str(e)}"
def predict_sentiment(text):
# Preprocess text
text = text.lower()
# Tokenize
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True)
# Get prediction
with torch.no_grad():
outputs = model(**inputs)
logits = outputs.logits
probabilities = torch.nn.functional.softmax(logits, dim=-1)
predicted_class = torch.argmax(probabilities, dim=-1).item()
# Map class to sentiment
sentiment_map = {0: "Negative", 1: "Neutral", 2: "Positive"}
sentiment = sentiment_map[predicted_class]
# Get probabilities
probs = probabilities[0].tolist()
prob_dict = {sentiment_map[i]: f"{prob*100:.2f}%" for i, prob in enumerate(probs)}
return sentiment, prob_dict
def analyze_sentiment(reviews):
"""Perform sentiment analysis on reviews"""
pros = defaultdict(int)
cons = defaultdict(int)
for review in reviews:
blob = TextBlob(str(review))
for sentence in blob.sentences:
polarity = sentence.sentiment.polarity
words = [word for word, tag in blob.tags
if tag in ('NN', 'NNS', 'JJ', 'JJR', 'JJS')]
if polarity > 0.3:
for word in words:
pros[word] += 1
elif polarity < -0.3:
for word in words:
cons[word] += 1
pros_sorted = [k for k, _ in sorted(pros.items(), key=lambda x: -x[1])] if pros else []
cons_sorted = [k for k, _ in sorted(cons.items(), key=lambda x: -x[1])] if cons else []
return pros_sorted, cons_sorted
def generate_category_summary(reviews_text):
"""Generate summary for a set of reviews"""
reviews = [r.strip() for r in reviews_text.split('\n') if r.strip()]
if not reviews:
return "Please enter at least one review."
# Analyze sentiment and get pros/cons
pros, cons = analyze_sentiment(reviews)
# Create summary text
summary_text = f"""
Review Analysis Summary:
PROS:
{', '.join(pros[:5]) if pros else 'No significant positive feedback'}
CONS:
{', '.join(cons[:5]) if cons else 'No major complaints'}
Based on {len(reviews)} reviews analyzed.
"""
# Generate concise summary using BART if available
if summarizer and len(summary_text) > 100:
try:
generated_summary = summarizer(
summary_text,
max_length=150,
min_length=50,
do_sample=False,
truncation=True
)[0]['summary_text']
except Exception as e:
generated_summary = f"Error generating summary: {str(e)}"
else:
generated_summary = summary_text
return generated_summary
def analyze_reviews(reviews_text):
# Original sentiment analysis
df, plot_html = analyze_reviews_sentiment(reviews_text)
# Create a temporary DataFrame with the new reviews
temp_df = pd.DataFrame({
'text': reviews_text.split('\n'),
'rating': [3] * len(reviews_text.split('\n')), # Default neutral rating
'name': ['New Review'] * len(reviews_text.split('\n')),
'cluster_name': ['New Reviews'] * len(reviews_text.split('\n'))
})
# Generate summary tables
summaries = generate_category_summaries(temp_df)
# Convert summaries to HTML
html_output = []
for category, tables in summaries.items():
for table in tables:
html_output.append(f"<h3>{table['section']}</h3>")
table_html = tabulate(
table['data'],
headers=table['headers'],
tablefmt="html",
stralign="left",
numalign="center"
)
html_output.append(table_html)
summary_html = "\n".join(html_output)
return df, plot_html, summary_html
def analyze_reviews_sentiment(reviews_text):
reviews = [r.strip() for r in reviews_text.split('\n') if r.strip()]
if not reviews:
return "Please enter at least one review.", None
results = []
for review in reviews:
sentiment, probs = predict_sentiment(review)
results.append({
'Review': review,
'Sentiment': sentiment,
'Confidence': probs
})
df = pd.DataFrame(results)
plt.figure(figsize=(10, 6))
sentiment_counts = df['Sentiment'].value_counts()
plt.bar(sentiment_counts.index, sentiment_counts.values)
plt.title('Sentiment Distribution')
plt.xlabel('Sentiment')
plt.ylabel('Count')
buf = io.BytesIO()
plt.savefig(buf, format='png')
buf.seek(0)
plot_base64 = base64.b64encode(buf.read()).decode('utf-8')
plt.close()
return df, f'<img src="data:image/png;base64,{plot_base64}" style="max-width:100%;">'
def create_interface():
# Get initial summary
initial_summary = get_initial_summary()
with gr.Blocks() as demo:
gr.Markdown("# Review Analysis System")
with gr.Tab("Review Analysis"):
# Add initial dataset summary
gr.Markdown("## Dataset Overview")
gr.HTML(initial_summary) # Changed from gr.Markdown to gr.HTML
gr.Markdown("## Analyze New Reviews")
reviews_input = gr.Textbox(
label="Enter reviews (one per line)",
placeholder="Enter product reviews here...",
lines=5
)
analyze_button = gr.Button("Analyze Reviews")
with gr.Row():
with gr.Column():
sentiment_output = gr.Dataframe(
label="Sentiment Analysis Results"
)
plot_output = gr.HTML(label="Sentiment Distribution")
with gr.Column():
summary_output = gr.HTML( # Changed from gr.Textbox to gr.HTML
label="Review Summary"
)
analyze_button.click(
analyze_reviews,
inputs=[reviews_input],
outputs=[sentiment_output, plot_output, summary_output]
)
return demo
def add_clusters_to_df(df):
"""Add cluster names to the DataFrame if they don't exist"""
# Create text features
vectorizer = TfidfVectorizer(max_features=1000, stop_words='english')
text_features = vectorizer.fit_transform(df['text'])
# Perform clustering
n_clusters = 4 # You can adjust this
kmeans = KMeans(n_clusters=n_clusters, random_state=42)
df['cluster_name'] = kmeans.fit_predict(text_features)
# Map cluster numbers to names
cluster_names = {
0: "Electronics",
1: "Home & Kitchen",
2: "Books & Media",
3: "Other Products"
}
df['cluster_name'] = df['cluster_name'].map(cluster_names)
return df
# Create and launch the interface
if __name__ == "__main__":
demo = create_interface()
demo.launch() |