Mohammed Foud
commited on
Commit
·
1c87021
1
Parent(s):
dc961fb
first commit
Browse files
app.py
CHANGED
@@ -53,11 +53,31 @@ def get_initial_summary():
|
|
53 |
return "Error: Could not load dataset.csv"
|
54 |
|
55 |
try:
|
|
|
|
|
|
|
|
|
56 |
# Generate summaries for all categories
|
57 |
summaries = generate_category_summaries(df)
|
58 |
|
59 |
# Convert summaries to HTML format for Gradio
|
60 |
html_output = []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
for category, tables in summaries.items():
|
62 |
html_output.append(f"<h2>CATEGORY: {category}</h2>")
|
63 |
|
@@ -78,18 +98,23 @@ def get_initial_summary():
|
|
78 |
border-collapse: collapse;
|
79 |
margin: 15px 0;
|
80 |
width: 100%;
|
|
|
81 |
}}
|
82 |
th, td {{
|
83 |
-
padding:
|
84 |
border: 1px solid #ddd;
|
85 |
text-align: left;
|
86 |
}}
|
87 |
th {{
|
88 |
background-color: #f5f5f5;
|
|
|
89 |
}}
|
90 |
tr:nth-child(even) {{
|
91 |
background-color: #f9f9f9;
|
92 |
}}
|
|
|
|
|
|
|
93 |
</style>
|
94 |
{table_html}
|
95 |
"""
|
@@ -99,6 +124,8 @@ def get_initial_summary():
|
|
99 |
|
100 |
return "\n".join(html_output)
|
101 |
except Exception as e:
|
|
|
|
|
102 |
return f"Error generating initial summary: {str(e)}"
|
103 |
|
104 |
def predict_sentiment(text):
|
@@ -318,31 +345,29 @@ def add_clusters_to_df(df):
|
|
318 |
|
319 |
def generate_category_summaries(df):
|
320 |
"""Generate product summaries in table format"""
|
321 |
-
# First, ensure we have clusters
|
322 |
-
if 'cluster_name' not in df.columns:
|
323 |
-
df = create_clusters(df)
|
324 |
-
|
325 |
summaries = {}
|
326 |
|
327 |
-
for
|
328 |
-
|
329 |
|
330 |
-
|
331 |
-
|
|
|
|
|
|
|
332 |
'reviews.rating': ['mean', 'count'],
|
333 |
'reviews.text': list
|
334 |
}).reset_index()
|
335 |
|
336 |
-
|
337 |
-
|
338 |
-
top_products = top_products.sort_values('avg_rating', ascending=False)
|
339 |
|
340 |
-
if len(
|
341 |
continue
|
342 |
|
343 |
# Get top 3 and worst products
|
344 |
-
top_3 =
|
345 |
-
worst_product =
|
346 |
|
347 |
# Analyze reviews for each product
|
348 |
product_details = []
|
@@ -371,7 +396,7 @@ def generate_category_summaries(df):
|
|
371 |
])
|
372 |
|
373 |
tables.append({
|
374 |
-
'section': f"TOP PRODUCTS IN {
|
375 |
'headers': ["Product", "Rating", "Reviews", "Pros", "Cons"],
|
376 |
'data': top_table
|
377 |
})
|
@@ -390,7 +415,7 @@ def generate_category_summaries(df):
|
|
390 |
]]
|
391 |
})
|
392 |
|
393 |
-
summaries[
|
394 |
|
395 |
return summaries
|
396 |
|
|
|
53 |
return "Error: Could not load dataset.csv"
|
54 |
|
55 |
try:
|
56 |
+
# First, create clusters if they don't exist
|
57 |
+
if 'cluster_name' not in df.columns:
|
58 |
+
df = create_clusters(df)
|
59 |
+
|
60 |
# Generate summaries for all categories
|
61 |
summaries = generate_category_summaries(df)
|
62 |
|
63 |
# Convert summaries to HTML format for Gradio
|
64 |
html_output = []
|
65 |
+
|
66 |
+
# Add dataset statistics
|
67 |
+
unique_count = df['name'].nunique()
|
68 |
+
total_count = len(df)
|
69 |
+
avg_rating = df['reviews.rating'].mean()
|
70 |
+
|
71 |
+
html_output.append(f"""
|
72 |
+
<h2>Dataset Statistics</h2>
|
73 |
+
<ul>
|
74 |
+
<li>Total Reviews: {total_count}</li>
|
75 |
+
<li>Unique Products: {unique_count}</li>
|
76 |
+
<li>Average Rating: {avg_rating:.2f}⭐</li>
|
77 |
+
</ul>
|
78 |
+
""")
|
79 |
+
|
80 |
+
# Add category summaries
|
81 |
for category, tables in summaries.items():
|
82 |
html_output.append(f"<h2>CATEGORY: {category}</h2>")
|
83 |
|
|
|
98 |
border-collapse: collapse;
|
99 |
margin: 15px 0;
|
100 |
width: 100%;
|
101 |
+
box-shadow: 0 1px 3px rgba(0,0,0,0.2);
|
102 |
}}
|
103 |
th, td {{
|
104 |
+
padding: 12px;
|
105 |
border: 1px solid #ddd;
|
106 |
text-align: left;
|
107 |
}}
|
108 |
th {{
|
109 |
background-color: #f5f5f5;
|
110 |
+
font-weight: bold;
|
111 |
}}
|
112 |
tr:nth-child(even) {{
|
113 |
background-color: #f9f9f9;
|
114 |
}}
|
115 |
+
tr:hover {{
|
116 |
+
background-color: #f5f5f5;
|
117 |
+
}}
|
118 |
</style>
|
119 |
{table_html}
|
120 |
"""
|
|
|
124 |
|
125 |
return "\n".join(html_output)
|
126 |
except Exception as e:
|
127 |
+
import traceback
|
128 |
+
print(traceback.format_exc()) # Print full error trace for debugging
|
129 |
return f"Error generating initial summary: {str(e)}"
|
130 |
|
131 |
def predict_sentiment(text):
|
|
|
345 |
|
346 |
def generate_category_summaries(df):
|
347 |
"""Generate product summaries in table format"""
|
|
|
|
|
|
|
|
|
348 |
summaries = {}
|
349 |
|
350 |
+
for category in df['cluster_name'].unique():
|
351 |
+
category_df = df[df['cluster_name'] == category]
|
352 |
|
353 |
+
if len(category_df) < 10:
|
354 |
+
continue
|
355 |
+
|
356 |
+
# Get product statistics
|
357 |
+
product_stats = category_df.groupby('name').agg({
|
358 |
'reviews.rating': ['mean', 'count'],
|
359 |
'reviews.text': list
|
360 |
}).reset_index()
|
361 |
|
362 |
+
product_stats.columns = ['name', 'avg_rating', 'review_count', 'reviews']
|
363 |
+
product_stats = product_stats[product_stats['review_count'] >= 5]
|
|
|
364 |
|
365 |
+
if len(product_stats) < 3:
|
366 |
continue
|
367 |
|
368 |
# Get top 3 and worst products
|
369 |
+
top_3 = product_stats.nlargest(3, 'avg_rating')
|
370 |
+
worst_product = product_stats.nsmallest(1, 'avg_rating')
|
371 |
|
372 |
# Analyze reviews for each product
|
373 |
product_details = []
|
|
|
396 |
])
|
397 |
|
398 |
tables.append({
|
399 |
+
'section': f"TOP PRODUCTS IN {category.upper()}",
|
400 |
'headers': ["Product", "Rating", "Reviews", "Pros", "Cons"],
|
401 |
'data': top_table
|
402 |
})
|
|
|
415 |
]]
|
416 |
})
|
417 |
|
418 |
+
summaries[category] = tables
|
419 |
|
420 |
return summaries
|
421 |
|