File size: 26,409 Bytes
ae5dc27
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
import os
import json
import re
from uuid import uuid4
from typing import Optional

# from agent.tools.message_tool import MessageTool
from agent.tools.message_tool import MessageTool
from agent.tools.sb_deploy_tool import SandboxDeployTool
from agent.tools.sb_expose_tool import SandboxExposeTool
from agent.tools.web_search_tool import WebSearchTool
from dotenv import load_dotenv
from utils.config import config

from agentpress.thread_manager import ThreadManager
from agentpress.response_processor import ProcessorConfig
from agent.tools.sb_shell_tool import SandboxShellTool
from agent.tools.sb_files_tool import SandboxFilesTool
from agent.tools.sb_browser_tool import SandboxBrowserTool
from agent.tools.data_providers_tool import DataProvidersTool
from agent.prompt import get_system_prompt
from utils import logger
from utils.auth_utils import get_account_id_from_thread
from services.billing import check_billing_status
from agent.tools.sb_vision_tool import SandboxVisionTool

load_dotenv()

async def run_agent(
    thread_id: str,
    project_id: str,
    stream: bool,
    thread_manager: Optional[ThreadManager] = None,
    native_max_auto_continues: int = 25,
    max_iterations: int = 150,
    model_name: str = "anthropic/claude-3-7-sonnet-latest",
    enable_thinking: Optional[bool] = False,
    reasoning_effort: Optional[str] = 'low',
    enable_context_manager: bool = True
):
    """Run the development agent with specified configuration."""
    print(f"πŸš€ Starting agent with model: {model_name}")

    thread_manager = ThreadManager()

    client = await thread_manager.db.client

    # Get account ID from thread for billing checks
    account_id = await get_account_id_from_thread(client, thread_id)
    if not account_id:
        raise ValueError("Could not determine account ID for thread")

    # Get sandbox info from project
    project = await client.table('projects').select('*').eq('project_id', project_id).execute()
    if not project.data or len(project.data) == 0:
        raise ValueError(f"Project {project_id} not found")

    project_data = project.data[0]
    sandbox_info = project_data.get('sandbox', {})
    if not sandbox_info.get('id'):
        raise ValueError(f"No sandbox found for project {project_id}")

    # Initialize tools with project_id instead of sandbox object
    # This ensures each tool independently verifies it's operating on the correct project
    thread_manager.add_tool(SandboxShellTool, project_id=project_id, thread_manager=thread_manager)
    thread_manager.add_tool(SandboxFilesTool, project_id=project_id, thread_manager=thread_manager)
    thread_manager.add_tool(SandboxBrowserTool, project_id=project_id, thread_id=thread_id, thread_manager=thread_manager)
    thread_manager.add_tool(SandboxDeployTool, project_id=project_id, thread_manager=thread_manager)
    thread_manager.add_tool(SandboxExposeTool, project_id=project_id, thread_manager=thread_manager)
    thread_manager.add_tool(MessageTool) # we are just doing this via prompt as there is no need to call it as a tool
    thread_manager.add_tool(WebSearchTool)
    thread_manager.add_tool(SandboxVisionTool, project_id=project_id, thread_id=thread_id, thread_manager=thread_manager)
    # Add data providers tool if RapidAPI key is available
    if config.RAPID_API_KEY:
        thread_manager.add_tool(DataProvidersTool)


    # Only include sample response if the model name does not contain "anthropic"
    if "anthropic" not in model_name.lower():
        sample_response_path = os.path.join(os.path.dirname(__file__), 'sample_responses/1.txt')
        with open(sample_response_path, 'r') as file:
            sample_response = file.read()
        
        system_message = { "role": "system", "content": get_system_prompt() + "\n\n <sample_assistant_response>" + sample_response + "</sample_assistant_response>" }
    else:
        system_message = { "role": "system", "content": get_system_prompt() }

    iteration_count = 0
    continue_execution = True

    while continue_execution and iteration_count < max_iterations:
        iteration_count += 1
        # logger.debug(f"Running iteration {iteration_count}...")

        # Billing check on each iteration - still needed within the iterations
        can_run, message, subscription = await check_billing_status(client, account_id)
        if not can_run:
            error_msg = f"Billing limit reached: {message}"
            # Yield a special message to indicate billing limit reached
            yield {
                "type": "status",
                "status": "stopped",
                "message": error_msg
            }
            break
        # Check if last message is from assistant using direct Supabase query
        latest_message = await client.table('messages').select('*').eq('thread_id', thread_id).in_('type', ['assistant', 'tool', 'user']).order('created_at', desc=True).limit(1).execute()
        if latest_message.data and len(latest_message.data) > 0:
            message_type = latest_message.data[0].get('type')
            if message_type == 'assistant':
                print(f"Last message was from assistant, stopping execution")
                continue_execution = False
                break

        # ---- Temporary Message Handling (Browser State & Image Context) ----
        temporary_message = None
        temp_message_content_list = [] # List to hold text/image blocks

        # Get the latest browser_state message
        latest_browser_state_msg = await client.table('messages').select('*').eq('thread_id', thread_id).eq('type', 'browser_state').order('created_at', desc=True).limit(1).execute()
        if latest_browser_state_msg.data and len(latest_browser_state_msg.data) > 0:
            try:
                browser_content = json.loads(latest_browser_state_msg.data[0]["content"])
                screenshot_base64 = browser_content.get("screenshot_base64")
                # Create a copy of the browser state without screenshot
                browser_state_text = browser_content.copy()
                browser_state_text.pop('screenshot_base64', None)
                browser_state_text.pop('screenshot_url', None)
                browser_state_text.pop('screenshot_url_base64', None)

                if browser_state_text:
                    temp_message_content_list.append({
                        "type": "text",
                        "text": f"The following is the current state of the browser:\n{json.dumps(browser_state_text, indent=2)}"
                    })
                if screenshot_base64:
                    temp_message_content_list.append({
                        "type": "image_url",
                        "image_url": {
                            "url": f"data:image/jpeg;base64,{screenshot_base64}",
                        }
                    })
                else:
                    logger.warning("Browser state found but no screenshot base64 data.")

                await client.table('messages').delete().eq('message_id', latest_browser_state_msg.data[0]["message_id"]).execute()
            except Exception as e:
                logger.error(f"Error parsing browser state: {e}")

        # Get the latest image_context message (NEW)
        latest_image_context_msg = await client.table('messages').select('*').eq('thread_id', thread_id).eq('type', 'image_context').order('created_at', desc=True).limit(1).execute()
        if latest_image_context_msg.data and len(latest_image_context_msg.data) > 0:
            try:
                image_context_content = json.loads(latest_image_context_msg.data[0]["content"])
                base64_image = image_context_content.get("base64")
                mime_type = image_context_content.get("mime_type")
                file_path = image_context_content.get("file_path", "unknown file")

                if base64_image and mime_type:
                    temp_message_content_list.append({
                        "type": "text",
                        "text": f"Here is the image you requested to see: '{file_path}'"
                    })
                    temp_message_content_list.append({
                        "type": "image_url",
                        "image_url": {
                            "url": f"data:{mime_type};base64,{base64_image}",
                        }
                    })
                else:
                    logger.warning(f"Image context found for '{file_path}' but missing base64 or mime_type.")

                await client.table('messages').delete().eq('message_id', latest_image_context_msg.data[0]["message_id"]).execute()
            except Exception as e:
                logger.error(f"Error parsing image context: {e}")

        # If we have any content, construct the temporary_message
        if temp_message_content_list:
            temporary_message = {"role": "user", "content": temp_message_content_list}
            # logger.debug(f"Constructed temporary message with {len(temp_message_content_list)} content blocks.")
        # ---- End Temporary Message Handling ----

        # Set max_tokens based on model
        max_tokens = None
        if "sonnet" in model_name.lower():
            max_tokens = 64000
        elif "gpt-4" in model_name.lower():
            max_tokens = 4096

        response = await thread_manager.run_thread(
            thread_id=thread_id,
            system_prompt=system_message,
            stream=stream,
            llm_model=model_name,
            llm_temperature=0,
            llm_max_tokens=max_tokens,
            tool_choice="auto",
            max_xml_tool_calls=1,
            temporary_message=temporary_message,
            processor_config=ProcessorConfig(
                xml_tool_calling=True,
                native_tool_calling=False,
                execute_tools=True,
                execute_on_stream=True,
                tool_execution_strategy="parallel",
                xml_adding_strategy="user_message"
            ),
            native_max_auto_continues=native_max_auto_continues,
            include_xml_examples=True,
            enable_thinking=enable_thinking,
            reasoning_effort=reasoning_effort,
            enable_context_manager=enable_context_manager
        )

        if isinstance(response, dict) and "status" in response and response["status"] == "error":
            yield response
            return

        # Track if we see ask, complete, or web-browser-takeover tool calls
        last_tool_call = None

        async for chunk in response:
            # print(f"CHUNK: {chunk}") # Uncomment for detailed chunk logging

            # Check for XML versions like <ask>, <complete>, or <web-browser-takeover> in assistant content chunks
            if chunk.get('type') == 'assistant' and 'content' in chunk:
                try:
                    # The content field might be a JSON string or object
                    content = chunk.get('content', '{}')
                    if isinstance(content, str):
                        assistant_content_json = json.loads(content)
                    else:
                        assistant_content_json = content

                    # The actual text content is nested within
                    assistant_text = assistant_content_json.get('content', '')
                    if isinstance(assistant_text, str): # Ensure it's a string
                         # Check for the closing tags as they signal the end of the tool usage
                        if '</ask>' in assistant_text or '</complete>' in assistant_text or '</web-browser-takeover>' in assistant_text:
                           if '</ask>' in assistant_text:
                               xml_tool = 'ask'
                           elif '</complete>' in assistant_text:
                               xml_tool = 'complete'
                           elif '</web-browser-takeover>' in assistant_text:
                               xml_tool = 'web-browser-takeover'

                           last_tool_call = xml_tool
                           print(f"Agent used XML tool: {xml_tool}")
                except json.JSONDecodeError:
                    # Handle cases where content might not be valid JSON
                    print(f"Warning: Could not parse assistant content JSON: {chunk.get('content')}")
                except Exception as e:
                    print(f"Error processing assistant chunk: {e}")

            # # Check for native function calls (OpenAI format)
            # elif chunk.get('type') == 'status' and 'content' in chunk:
            #     try:
            #         # Parse the status content
            #         status_content = chunk.get('content', '{}')
            #         if isinstance(status_content, str):
            #             status_content = json.loads(status_content)

            #         # Check if this is a tool call status
            #         status_type = status_content.get('status_type')
            #         function_name = status_content.get('function_name', '')

            #         # Check for special function names that should stop execution
            #         if status_type == 'tool_started' and function_name in ['ask', 'complete', 'web-browser-takeover']:
            #             last_tool_call = function_name
            #             print(f"Agent used native function call: {function_name}")
            #     except json.JSONDecodeError:
            #         # Handle cases where content might not be valid JSON
            #         print(f"Warning: Could not parse status content JSON: {chunk.get('content')}")
            #     except Exception as e:
            #         print(f"Error processing status chunk: {e}")

            yield chunk

        # Check if we should stop based on the last tool call
        if last_tool_call in ['ask', 'complete', 'web-browser-takeover']:
            print(f"Agent decided to stop with tool: {last_tool_call}")
            continue_execution = False


# # TESTING

# async def test_agent():
#     """Test function to run the agent with a sample query"""
#     from agentpress.thread_manager import ThreadManager
#     from services.supabase import DBConnection

#     # Initialize ThreadManager
#     thread_manager = ThreadManager()

#     # Create a test thread directly with Postgres function
#     client = await DBConnection().client

#     try:
#         # Get user's personal account
#         account_result = await client.rpc('get_personal_account').execute()

#         # if not account_result.data:
#         #     print("Error: No personal account found")
#         #     return

#         account_id = "a5fe9cb6-4812-407e-a61c-fe95b7320c59"

#         if not account_id:
#             print("Error: Could not get account ID")
#             return

#         # Find or create a test project in the user's account
#         project_result = await client.table('projects').select('*').eq('name', 'test11').eq('account_id', account_id).execute()

#         if project_result.data and len(project_result.data) > 0:
#             # Use existing test project
#             project_id = project_result.data[0]['project_id']
#             print(f"\nπŸ”„ Using existing test project: {project_id}")
#         else:
#             # Create new test project if none exists
#             project_result = await client.table('projects').insert({
#                 "name": "test11",
#                 "account_id": account_id
#             }).execute()
#             project_id = project_result.data[0]['project_id']
#             print(f"\n✨ Created new test project: {project_id}")

#         # Create a thread for this project
#         thread_result = await client.table('threads').insert({
#             'project_id': project_id,
#             'account_id': account_id
#         }).execute()
#         thread_data = thread_result.data[0] if thread_result.data else None

#         if not thread_data:
#             print("Error: No thread data returned")
#             return

#         thread_id = thread_data['thread_id']
#     except Exception as e:
#         print(f"Error setting up thread: {str(e)}")
#         return

#     print(f"\nπŸ€– Agent Thread Created: {thread_id}\n")

#     # Interactive message input loop
#     while True:
#         # Get user input
#         user_message = input("\nπŸ’¬ Enter your message (or 'exit' to quit): ")
#         if user_message.lower() == 'exit':
#             break

#         if not user_message.strip():
#             print("\nπŸ”„ Running agent...\n")
#             await process_agent_response(thread_id, project_id, thread_manager)
#             continue

#         # Add the user message to the thread
#         await thread_manager.add_message(
#             thread_id=thread_id,
#             type="user",
#             content={
#                 "role": "user",
#                 "content": user_message
#             },
#             is_llm_message=True
#         )

#         print("\nπŸ”„ Running agent...\n")
#         await process_agent_response(thread_id, project_id, thread_manager)

#     print("\nπŸ‘‹ Test completed. Goodbye!")

# async def process_agent_response(
#     thread_id: str,
#     project_id: str,
#     thread_manager: ThreadManager,
#     stream: bool = True,
#     model_name: str = "anthropic/claude-3-7-sonnet-latest",
#     enable_thinking: Optional[bool] = False,
#     reasoning_effort: Optional[str] = 'low',
#     enable_context_manager: bool = True
# ):
#     """Process the streaming response from the agent."""
#     chunk_counter = 0
#     current_response = ""
#     tool_usage_counter = 0 # Renamed from tool_call_counter as we track usage via status

#     # Create a test sandbox for processing with a unique test prefix to avoid conflicts with production sandboxes
#     sandbox_pass = str(uuid4())
#     sandbox = create_sandbox(sandbox_pass)

#     # Store the original ID so we can refer to it
#     original_sandbox_id = sandbox.id

#     # Generate a clear test identifier
#     test_prefix = f"test_{uuid4().hex[:8]}_"
#     logger.info(f"Created test sandbox with ID {original_sandbox_id} and test prefix {test_prefix}")

#     # Log the sandbox URL for debugging
#     print(f"\033[91mTest sandbox created: {str(sandbox.get_preview_link(6080))}/vnc_lite.html?password={sandbox_pass}\033[0m")

#     async for chunk in run_agent(
#         thread_id=thread_id,
#         project_id=project_id,
#         sandbox=sandbox,
#         stream=stream,
#         thread_manager=thread_manager,
#         native_max_auto_continues=25,
#         model_name=model_name,
#         enable_thinking=enable_thinking,
#         reasoning_effort=reasoning_effort,
#         enable_context_manager=enable_context_manager
#     ):
#         chunk_counter += 1
#         # print(f"CHUNK: {chunk}") # Uncomment for debugging

#         if chunk.get('type') == 'assistant':
#             # Try parsing the content JSON
#             try:
#                 # Handle content as string or object
#                 content = chunk.get('content', '{}')
#                 if isinstance(content, str):
#                     content_json = json.loads(content)
#                 else:
#                     content_json = content

#                 actual_content = content_json.get('content', '')
#                 # Print the actual assistant text content as it comes
#                 if actual_content:
#                      # Check if it contains XML tool tags, if so, print the whole tag for context
#                     if '<' in actual_content and '>' in actual_content:
#                          # Avoid printing potentially huge raw content if it's not just text
#                          if len(actual_content) < 500: # Heuristic limit
#                             print(actual_content, end='', flush=True)
#                          else:
#                              # Maybe just print a summary if it's too long or contains complex XML
#                              if '</ask>' in actual_content: print("<ask>...</ask>", end='', flush=True)
#                              elif '</complete>' in actual_content: print("<complete>...</complete>", end='', flush=True)
#                              else: print("<tool_call>...</tool_call>", end='', flush=True) # Generic case
#                     else:
#                         # Regular text content
#                          print(actual_content, end='', flush=True)
#                     current_response += actual_content # Accumulate only text part
#             except json.JSONDecodeError:
#                  # If content is not JSON (e.g., just a string chunk), print directly
#                  raw_content = chunk.get('content', '')
#                  print(raw_content, end='', flush=True)
#                  current_response += raw_content
#             except Exception as e:
#                  print(f"\nError processing assistant chunk: {e}\n")

#         elif chunk.get('type') == 'tool': # Updated from 'tool_result'
#             # Add timestamp and format tool result nicely
#             tool_name = "UnknownTool" # Try to get from metadata if available
#             result_content = "No content"

#             # Parse metadata - handle both string and dict formats
#             metadata = chunk.get('metadata', {})
#             if isinstance(metadata, str):
#                 try:
#                     metadata = json.loads(metadata)
#                 except json.JSONDecodeError:
#                     metadata = {}

#             linked_assistant_msg_id = metadata.get('assistant_message_id')
#             parsing_details = metadata.get('parsing_details')
#             if parsing_details:
#                 tool_name = parsing_details.get('xml_tag_name', 'UnknownTool') # Get name from parsing details

#             try:
#                 # Content is a JSON string or object
#                 content = chunk.get('content', '{}')
#                 if isinstance(content, str):
#                     content_json = json.loads(content)
#                 else:
#                     content_json = content

#                 # The actual tool result is nested inside content.content
#                 tool_result_str = content_json.get('content', '')
#                  # Extract the actual tool result string (remove outer <tool_result> tag if present)
#                 match = re.search(rf'<{tool_name}>(.*?)</{tool_name}>', tool_result_str, re.DOTALL)
#                 if match:
#                     result_content = match.group(1).strip()
#                     # Try to parse the result string itself as JSON for pretty printing
#                     try:
#                         result_obj = json.loads(result_content)
#                         result_content = json.dumps(result_obj, indent=2)
#                     except json.JSONDecodeError:
#                          # Keep as string if not JSON
#                          pass
#                 else:
#                      # Fallback if tag extraction fails
#                      result_content = tool_result_str

#             except json.JSONDecodeError:
#                 result_content = chunk.get('content', 'Error parsing tool content')
#             except Exception as e:
#                 result_content = f"Error processing tool chunk: {e}"

#             print(f"\n\nπŸ› οΈ  TOOL RESULT [{tool_name}] β†’ {result_content}")

#         elif chunk.get('type') == 'status':
#             # Log tool status changes
#             try:
#                 # Handle content as string or object
#                 status_content = chunk.get('content', '{}')
#                 if isinstance(status_content, str):
#                     status_content = json.loads(status_content)

#                 status_type = status_content.get('status_type')
#                 function_name = status_content.get('function_name', '')
#                 xml_tag_name = status_content.get('xml_tag_name', '') # Get XML tag if available
#                 tool_name = xml_tag_name or function_name # Prefer XML tag name

#                 if status_type == 'tool_started' and tool_name:
#                     tool_usage_counter += 1
#                     print(f"\n⏳ TOOL STARTING #{tool_usage_counter} [{tool_name}]")
#                     print("  " + "-" * 40)
#                     # Return to the current content display
#                     if current_response:
#                         print("\nContinuing response:", flush=True)
#                         print(current_response, end='', flush=True)
#                 elif status_type == 'tool_completed' and tool_name:
#                      status_emoji = "βœ…"
#                      print(f"\n{status_emoji} TOOL COMPLETED: {tool_name}")
#                 elif status_type == 'finish':
#                      finish_reason = status_content.get('finish_reason', '')
#                      if finish_reason:
#                          print(f"\nπŸ“Œ Finished: {finish_reason}")
#                 # else: # Print other status types if needed for debugging
#                 #    print(f"\nℹ️ STATUS: {chunk.get('content')}")

#             except json.JSONDecodeError:
#                  print(f"\nWarning: Could not parse status content JSON: {chunk.get('content')}")
#             except Exception as e:
#                 print(f"\nError processing status chunk: {e}")


#         # Removed elif chunk.get('type') == 'tool_call': block

#     # Update final message
#     print(f"\n\nβœ… Agent run completed with {tool_usage_counter} tool executions")

#     # Try to clean up the test sandbox if possible
#     try:
#         # Attempt to delete/archive the sandbox to clean up resources
#         # Note: Actual deletion may depend on the Daytona SDK's capabilities
#         logger.info(f"Attempting to clean up test sandbox {original_sandbox_id}")
#         # If there's a method to archive/delete the sandbox, call it here
#         # Example: daytona.archive_sandbox(sandbox.id)
#     except Exception as e:
#         logger.warning(f"Failed to clean up test sandbox {original_sandbox_id}: {str(e)}")

# if __name__ == "__main__":
#     import asyncio

#     # Configure any environment variables or setup needed for testing
#     load_dotenv()  # Ensure environment variables are loaded

#     # Run the test function
#     asyncio.run(test_agent())