Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,72 +1,132 @@
|
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
-
import
|
| 3 |
-
|
| 4 |
from docx import Document
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
|
| 6 |
-
#
|
| 7 |
-
|
| 8 |
-
generator_model = T5ForConditionalGeneration.from_pretrained("google/flan-t5-large")
|
| 9 |
|
| 10 |
-
# Function to
|
| 11 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
doc = Document(file)
|
| 13 |
-
text = "
|
|
|
|
|
|
|
| 14 |
return text
|
| 15 |
|
| 16 |
-
# Function to process
|
| 17 |
-
def generate_financial_statements(
|
| 18 |
-
#
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
elif file_type == "xlsx":
|
| 23 |
-
df = pd.read_excel(file)
|
| 24 |
-
context = df.to_string()
|
| 25 |
-
elif file_type == "docx":
|
| 26 |
-
context = read_docs(file)
|
| 27 |
-
else:
|
| 28 |
-
st.error("Unsupported file type. Please upload a CSV, Excel, or DOCS file.")
|
| 29 |
-
return None
|
| 30 |
-
|
| 31 |
-
# Define financial statement queries
|
| 32 |
-
queries = [
|
| 33 |
-
"Generate a journal from the following financial data:",
|
| 34 |
-
"Generate a general ledger from the following financial data:",
|
| 35 |
-
"Generate an income statement from the following financial data:",
|
| 36 |
-
"Generate a balance sheet from the following financial data:",
|
| 37 |
-
"Generate a cash flow statement from the following financial data:"
|
| 38 |
-
]
|
| 39 |
-
|
| 40 |
-
# Generate financial statements using the generator model
|
| 41 |
-
financial_statements = {}
|
| 42 |
-
for query in queries:
|
| 43 |
-
# Combine query and context
|
| 44 |
-
input_text = f"{query}\n{context}"
|
| 45 |
-
|
| 46 |
-
# Generate response using the generator model
|
| 47 |
-
input_ids = generator_tokenizer(input_text, return_tensors="pt", max_length=512, truncation=True).input_ids
|
| 48 |
-
output = generator_model.generate(input_ids, max_length=512)
|
| 49 |
-
response = generator_tokenizer.decode(output[0], skip_special_tokens=True)
|
| 50 |
-
|
| 51 |
-
# Store the result
|
| 52 |
-
financial_statements[query] = response
|
| 53 |
-
|
| 54 |
-
return financial_statements
|
| 55 |
-
|
| 56 |
-
# Streamlit UI
|
| 57 |
-
st.title("Financial Statement Generator")
|
| 58 |
-
st.write("Upload your financial data (CSV, Excel, or DOCS) to generate journal, general ledger, income statement, balance sheet, and cash flow statement.")
|
| 59 |
|
| 60 |
-
#
|
| 61 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 62 |
if uploaded_file is not None:
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
for statement_type, statement in financial_statements.items():
|
| 69 |
-
st.subheader(statement_type)
|
| 70 |
-
st.write(statement)
|
| 71 |
else:
|
| 72 |
-
st.error("
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Import necessary libraries
|
| 2 |
import streamlit as st
|
| 3 |
+
from transformers import RagTokenizer, RagRetriever, RagSequenceForGeneration
|
| 4 |
+
import PyPDF2
|
| 5 |
from docx import Document
|
| 6 |
+
import pandas as pd
|
| 7 |
+
import os
|
| 8 |
+
|
| 9 |
+
# Set up Streamlit app
|
| 10 |
+
st.title("Financial Statement Generator")
|
| 11 |
+
st.write("Upload a PDF or DOCX file to generate financial statements.")
|
| 12 |
|
| 13 |
+
# File upload
|
| 14 |
+
uploaded_file = st.file_uploader("Upload a PDF or DOCX file", type=["pdf", "docx"])
|
|
|
|
| 15 |
|
| 16 |
+
# Function to extract text from PDF
|
| 17 |
+
def extract_text_from_pdf(file):
|
| 18 |
+
pdf_reader = PyPDF2.PdfFileReader(file)
|
| 19 |
+
text = ""
|
| 20 |
+
for page_num in range(pdf_reader.getNumPages()):
|
| 21 |
+
page = pdf_reader.getPage(page_num)
|
| 22 |
+
text += page.extract_text()
|
| 23 |
+
return text
|
| 24 |
+
|
| 25 |
+
# Function to extract text from DOCX
|
| 26 |
+
def extract_text_from_docx(file):
|
| 27 |
doc = Document(file)
|
| 28 |
+
text = ""
|
| 29 |
+
for paragraph in doc.paragraphs:
|
| 30 |
+
text += paragraph.text + "\n"
|
| 31 |
return text
|
| 32 |
|
| 33 |
+
# Function to process extracted text using RAG model
|
| 34 |
+
def generate_financial_statements(text):
|
| 35 |
+
# Load RAG model and tokenizer
|
| 36 |
+
tokenizer = RagTokenizer.from_pretrained("facebook/rag-sequence-base")
|
| 37 |
+
retriever = RagRetriever.from_pretrained("facebook/rag-sequence-base", index_name="exact")
|
| 38 |
+
model = RagSequenceForGeneration.from_pretrained("facebook/rag-sequence-base", retriever=retriever)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
|
| 40 |
+
# Tokenize input text
|
| 41 |
+
inputs = tokenizer(text, return_tensors="pt", max_length=512, truncation=True)
|
| 42 |
+
|
| 43 |
+
# Generate financial statements
|
| 44 |
+
outputs = model.generate(input_ids=inputs["input_ids"], max_length=1000)
|
| 45 |
+
|
| 46 |
+
# Decode generated text
|
| 47 |
+
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 48 |
+
return generated_text
|
| 49 |
+
|
| 50 |
+
# Function to parse generated text into financial statements
|
| 51 |
+
def parse_financial_statements(generated_text):
|
| 52 |
+
# Placeholder logic for parsing generated text into structured data
|
| 53 |
+
# You can customize this based on your specific requirements
|
| 54 |
+
statements = {
|
| 55 |
+
"Ledger": [],
|
| 56 |
+
"Journal General": [],
|
| 57 |
+
"Income Statement": [],
|
| 58 |
+
"Balance Sheet": [],
|
| 59 |
+
"Cash Flow Statement": []
|
| 60 |
+
}
|
| 61 |
+
|
| 62 |
+
# Example parsing logic (replace with actual logic)
|
| 63 |
+
lines = generated_text.split("\n")
|
| 64 |
+
for line in lines:
|
| 65 |
+
if "Transaction:" in line:
|
| 66 |
+
statements["Ledger"].append(line)
|
| 67 |
+
elif "Revenue:" in line or "Expense:" in line:
|
| 68 |
+
statements["Income Statement"].append(line)
|
| 69 |
+
elif "Asset:" in line or "Liability:" in line or "Equity:" in line:
|
| 70 |
+
statements["Balance Sheet"].append(line)
|
| 71 |
+
elif "Cash Inflow:" in line or "Cash Outflow:" in line:
|
| 72 |
+
statements["Cash Flow Statement"].append(line)
|
| 73 |
+
|
| 74 |
+
return statements
|
| 75 |
+
|
| 76 |
+
# Main logic
|
| 77 |
if uploaded_file is not None:
|
| 78 |
+
# Extract text from uploaded file
|
| 79 |
+
if uploaded_file.type == "application/pdf":
|
| 80 |
+
text = extract_text_from_pdf(uploaded_file)
|
| 81 |
+
elif uploaded_file.type == "application/vnd.openxmlformats-officedocument.wordprocessingml.document":
|
| 82 |
+
text = extract_text_from_docx(uploaded_file)
|
|
|
|
|
|
|
|
|
|
| 83 |
else:
|
| 84 |
+
st.error("Unsupported file format. Please upload a PDF or DOCX file.")
|
| 85 |
+
st.stop()
|
| 86 |
+
|
| 87 |
+
# Display extracted text
|
| 88 |
+
st.subheader("Extracted Text")
|
| 89 |
+
st.write(text)
|
| 90 |
+
|
| 91 |
+
# Generate financial statements
|
| 92 |
+
st.subheader("Generated Financial Statements")
|
| 93 |
+
generated_text = generate_financial_statements(text)
|
| 94 |
+
statements = parse_financial_statements(generated_text)
|
| 95 |
+
|
| 96 |
+
# Display financial statements
|
| 97 |
+
for statement_type, data in statements.items():
|
| 98 |
+
st.write(f"### {statement_type}")
|
| 99 |
+
if data:
|
| 100 |
+
st.write(data)
|
| 101 |
+
else:
|
| 102 |
+
st.write("No data available for this statement.")
|
| 103 |
+
|
| 104 |
+
# Allow users to download statements as CSV
|
| 105 |
+
for statement_type, data in statements.items():
|
| 106 |
+
if data:
|
| 107 |
+
df = pd.DataFrame(data, columns=[statement_type])
|
| 108 |
+
csv = df.to_csv(index=False)
|
| 109 |
+
st.download_button(
|
| 110 |
+
label=f"Download {statement_type} as CSV",
|
| 111 |
+
data=csv,
|
| 112 |
+
file_name=f"{statement_type.lower().replace(' ', '_')}.csv",
|
| 113 |
+
mime="text/csv"
|
| 114 |
+
)
|
| 115 |
+
|
| 116 |
+
# Dependencies
|
| 117 |
+
st.sidebar.subheader("Dependencies")
|
| 118 |
+
st.sidebar.write("""
|
| 119 |
+
- Streamlit
|
| 120 |
+
- Hugging Face Transformers
|
| 121 |
+
- PyPDF2
|
| 122 |
+
- python-docx
|
| 123 |
+
- pandas
|
| 124 |
+
""")
|
| 125 |
+
|
| 126 |
+
# Deployment instructions
|
| 127 |
+
st.sidebar.subheader("Deployment Instructions")
|
| 128 |
+
st.sidebar.write("""
|
| 129 |
+
1. Install dependencies: `pip install streamlit transformers PyPDF2 python-docx pandas`
|
| 130 |
+
2. Run the app: `streamlit run app.py`
|
| 131 |
+
3. Access the app in your browser at `http://localhost:8501`
|
| 132 |
+
""")
|