Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -4,6 +4,8 @@ from groq import Groq
|
|
4 |
from PyPDF2 import PdfReader
|
5 |
from docx import Document
|
6 |
from sentence_transformers import SentenceTransformer
|
|
|
|
|
7 |
|
8 |
# Initialize Groq API Client
|
9 |
client = Groq(api_key=os.environ.get("Groq_Api"))
|
@@ -16,8 +18,8 @@ uploaded_file = st.file_uploader("Upload a PDF or DOCX file", type=["pdf", "docx
|
|
16 |
|
17 |
if uploaded_file:
|
18 |
st.write(f"**File Name:** {uploaded_file.name}") # Display file name
|
19 |
-
|
20 |
-
#
|
21 |
def extract_text(file):
|
22 |
if file.name.endswith(".pdf"):
|
23 |
reader = PdfReader(file)
|
@@ -35,15 +37,29 @@ if uploaded_file:
|
|
35 |
query = st.text_input("Enter your question")
|
36 |
|
37 |
if query:
|
38 |
-
#
|
39 |
model = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2")
|
40 |
-
chunks = [file_text[i:i + 512] for i in range(0, len(file_text), 512)]
|
41 |
-
embeddings = model.encode(chunks)
|
42 |
|
43 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
chat_completion = client.chat.completions.create(
|
45 |
messages=[
|
46 |
-
{"role": "user", "content": f"Answer based on this document: {query}\n\n{
|
47 |
],
|
48 |
model="llama-3.3-70b-versatile",
|
49 |
)
|
@@ -52,6 +68,6 @@ if uploaded_file:
|
|
52 |
answer = chat_completion.choices[0].message.content
|
53 |
st.subheader("Answer:")
|
54 |
st.write(answer)
|
|
|
55 |
else:
|
56 |
st.error("Failed to extract text from the file. Please check the format.")
|
57 |
-
|
|
|
4 |
from PyPDF2 import PdfReader
|
5 |
from docx import Document
|
6 |
from sentence_transformers import SentenceTransformer
|
7 |
+
import faiss
|
8 |
+
import numpy as np
|
9 |
|
10 |
# Initialize Groq API Client
|
11 |
client = Groq(api_key=os.environ.get("Groq_Api"))
|
|
|
18 |
|
19 |
if uploaded_file:
|
20 |
st.write(f"**File Name:** {uploaded_file.name}") # Display file name
|
21 |
+
|
22 |
+
# Extract Text
|
23 |
def extract_text(file):
|
24 |
if file.name.endswith(".pdf"):
|
25 |
reader = PdfReader(file)
|
|
|
37 |
query = st.text_input("Enter your question")
|
38 |
|
39 |
if query:
|
40 |
+
# Load Sentence Transformer Model
|
41 |
model = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2")
|
|
|
|
|
42 |
|
43 |
+
# Chunk & Embed Text
|
44 |
+
chunk_size = 512
|
45 |
+
chunks = [file_text[i:i + chunk_size] for i in range(0, len(file_text), chunk_size)]
|
46 |
+
embeddings = model.encode(chunks, convert_to_numpy=True)
|
47 |
+
|
48 |
+
# Build FAISS Index for Fast Retrieval
|
49 |
+
index = faiss.IndexFlatL2(embeddings.shape[1])
|
50 |
+
index.add(embeddings)
|
51 |
+
|
52 |
+
# Query Embedding
|
53 |
+
query_embedding = model.encode([query], convert_to_numpy=True)
|
54 |
+
_, retrieved_idx = index.search(query_embedding, k=3)
|
55 |
+
|
56 |
+
# Retrieve Top 3 Relevant Chunks
|
57 |
+
relevant_text = " ".join([chunks[i] for i in retrieved_idx[0]])
|
58 |
+
|
59 |
+
# Query Groq API with relevant chunks only
|
60 |
chat_completion = client.chat.completions.create(
|
61 |
messages=[
|
62 |
+
{"role": "user", "content": f"Answer based on this document: {query}\n\n{relevant_text}"},
|
63 |
],
|
64 |
model="llama-3.3-70b-versatile",
|
65 |
)
|
|
|
68 |
answer = chat_completion.choices[0].message.content
|
69 |
st.subheader("Answer:")
|
70 |
st.write(answer)
|
71 |
+
|
72 |
else:
|
73 |
st.error("Failed to extract text from the file. Please check the format.")
|
|