Spaces:
Sleeping
Sleeping
File size: 6,914 Bytes
38c327b b82d535 1142c0d 38c327b 1142c0d 38c327b b82d535 1142c0d b82d535 1142c0d b82d535 1142c0d b82d535 1142c0d 38c327b 1142c0d 38c327b 1142c0d 38c327b 1142c0d 38c327b 1142c0d 38c327b 1142c0d 38c327b 1142c0d 38c327b 1142c0d 38c327b 1142c0d 38c327b 1142c0d 38c327b 1142c0d 38c327b 1142c0d 38c327b 1142c0d 38c327b 1142c0d 38c327b 1142c0d 38c327b 1142c0d 38c327b 1142c0d 38c327b 1142c0d 38c327b 1142c0d 38c327b 1142c0d 38c327b 1142c0d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 |
import os
import json
import requests
import streamlit as st
from datetime import datetime
from docx import Document
from PyPDF2 import PdfReader
# ------------------------------------------------------------------------------
# π CONFIGURATION - API & SETTINGS
# ------------------------------------------------------------------------------
GROQ_API_KEY = os.getenv("GROQ_API")
GROQ_ENDPOINT = "https://api.groq.com/openai/v1/chat/completions"
GROQ_MODEL = "llama-3.3-70b-versatile"
# ------------------------------------------------------------------------------
# π₯ ADVANCED API CALL FUNCTION
# ------------------------------------------------------------------------------
def call_groq_api(messages, temperature=0.7):
"""Handles API calls to Groq for chat-based completions with robust error handling."""
headers = {
"Authorization": f"Bearer {GROQ_API_KEY}",
"Content-Type": "application/json"
}
payload = {
"model": GROQ_MODEL,
"messages": messages,
"temperature": temperature,
"max_tokens": 1024
}
try:
response = requests.post(GROQ_ENDPOINT, headers=headers, json=payload, timeout=15)
response.raise_for_status()
return response.json()["choices"][0]["message"]["content"].strip()
except requests.exceptions.RequestException as e:
st.error(f"β API Request Failed: {e}")
return None
# ------------------------------------------------------------------------------
# π FILE PROCESSING (PDF / DOCX)
# ------------------------------------------------------------------------------
def extract_resume_text(file_obj):
"""Extracts text from PDF or DOCX resumes."""
file_bytes = file_obj.read()
file_obj.seek(0)
ext = os.path.splitext(file_obj.name)[-1].lower()
if ext == ".pdf":
return "\n".join(page.extract_text() for page in PdfReader(file_bytes).pages if page.extract_text())
elif ext in [".docx", ".doc"]:
return "\n".join([para.text for para in Document(file_bytes).paragraphs])
else:
return file_bytes.decode("utf-8", errors="ignore")
# ------------------------------------------------------------------------------
# π― AI-Powered Resume Parsing
# ------------------------------------------------------------------------------
def parse_resume(resume_text):
"""Extracts structured JSON resume details using Groq's Llama 3.3 model."""
messages = [
{"role": "system", "content": "You are a resume parsing expert. Extract structured data."},
{"role": "user", "content": f"Extract structured data from this resume:\n{resume_text}\n\nOutput as JSON."}
]
return call_groq_api(messages, temperature=0.4)
# ------------------------------------------------------------------------------
# βοΈ AI-Powered Cover Letter Generator
# ------------------------------------------------------------------------------
def generate_cover_letter(candidate_json, job_description):
"""Generates a professional cover letter using structured candidate data."""
date_str = datetime.today().strftime("%d - %b - %Y")
messages = [
{"role": "system", "content": "You are a top-tier career advisor. Write persuasive cover letters."},
{"role": "user", "content": f"""
Generate a professional cover letter using:
- Candidate Profile: {candidate_json}
- Job Description: {job_description}
- Date: {date_str}
The cover letter should be engaging, personalized, and formatted professionally.
"""}
]
return call_groq_api(messages, temperature=0.5)
# ------------------------------------------------------------------------------
# π AI-Powered Resume Creator
# ------------------------------------------------------------------------------
def generate_resume(first_name, last_name, location, work_experience, school_experience, skills):
"""Generates a well-formatted professional resume."""
candidate_data = json.dumps({
"first_name": first_name,
"last_name": last_name,
"location": location,
"work_experience": work_experience,
"school_experience": school_experience,
"skills": skills
}, indent=2)
messages = [
{"role": "system", "content": "You are a professional resume writer."},
{"role": "user", "content": f"""
Create a structured, ATS-friendly resume using:
{candidate_data}
Ensure:
- Clear sections (Personal Info, Experience, Education, Skills)
- Professional formatting
- A compelling summary if possible.
"""}
]
return call_groq_api(messages, temperature=0.5)
# ------------------------------------------------------------------------------
# π¨ STREAMLIT UI DESIGN
# ------------------------------------------------------------------------------
st.set_page_config(page_title="AI-Powered Job Assistant", layout="wide")
st.title("π AI-Powered Resume & Cover Letter Generator")
st.markdown("#### Generate a **Resume** or a **Cover Letter** using **Llama 3.3-70B** powered by **Groq AI**.")
tabs = st.tabs(["π Cover Letter Generator", "π Resume Creator"])
# ----- COVER LETTER GENERATOR -----
with tabs[0]:
st.header("π Cover Letter Generator")
resume_file = st.file_uploader("Upload Your Resume", type=["pdf", "docx", "txt"])
job_description = st.text_area("Paste Job Description", height=200)
if st.button("πΉ Generate Cover Letter"):
if resume_file and job_description.strip():
with st.spinner("β¨ Processing resume..."):
resume_text = extract_resume_text(resume_file)
candidate_json = parse_resume(resume_text)
cover_letter = generate_cover_letter(candidate_json, job_description)
st.success("β
Cover Letter Generated!")
st.text_area("π Your Cover Letter:", cover_letter, height=300)
else:
st.warning("β οΈ Please upload a resume and paste the job description.")
# ----- RESUME CREATOR -----
with tabs[1]:
st.header("π Resume Creator")
with st.form("resume_form"):
col1, col2 = st.columns(2)
first_name = col1.text_input("First Name")
last_name = col2.text_input("Last Name")
location = st.text_input("Location")
work_experience = st.text_area("Work Experience", height=150)
school_experience = st.text_area("Education", height=150)
skills = st.text_area("Skills", height=100)
submit = st.form_submit_button("π Generate Resume")
if submit:
with st.spinner("π Creating Resume..."):
resume_text = generate_resume(first_name, last_name, location, work_experience, school_experience, skills)
st.success("β
Resume Generated!")
st.text_area("π Your Resume:", resume_text, height=400)
|