File size: 25,837 Bytes
bc80edf
 
df481b9
bc80edf
 
 
 
 
 
 
df481b9
10922c3
bc80edf
10922c3
bc80edf
 
 
 
 
 
10922c3
bc80edf
10922c3
bc80edf
 
 
 
 
df481b9
bc80edf
df481b9
10922c3
bc80edf
10922c3
 
 
 
bc80edf
 
 
 
 
 
 
 
 
 
 
10922c3
 
 
 
 
 
df481b9
bc80edf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10922c3
 
 
 
bc80edf
10922c3
bc80edf
df481b9
bc80edf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
df481b9
bc80edf
10922c3
bc80edf
 
 
 
10922c3
bc80edf
10922c3
bc80edf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10922c3
 
bc80edf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10922c3
bc80edf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
df481b9
bc80edf
 
 
 
 
 
 
df481b9
bc80edf
 
 
 
 
 
 
 
 
 
 
 
 
df481b9
bc80edf
 
10922c3
df481b9
bc80edf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
df481b9
10922c3
bc80edf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
df481b9
 
bc80edf
df481b9
 
bc80edf
 
 
df481b9
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
# advanced_archsketch_app.py
import os
import streamlit as st
from streamlit_drawable_canvas import st_canvas
from PIL import Image, ImageDraw, ImageFont, UnidentifiedImageError
import requests # For potential real API calls later
import openai # Used notionally
from io import BytesIO
import json
import uuid
import time
import random
import base64 # For potential image encoding if needed

# ─── 1. Configuration & Secrets ─────────────────────────────────────────────
try:
    openai.api_key = st.secrets["OPENAI_API_KEY"]
except Exception:
    st.error("OpenAI API Key not found. Please set it in Streamlit secrets.")
    # openai.api_key = "YOUR_FALLBACK_KEY_FOR_LOCAL_TESTING" # Or load from env

st.set_page_config(page_title="ArchSketch AI [Advanced]", layout="wide", page_icon="πŸ—οΈ")

# --- Simulated Backend API Endpoints ---
# Replace with your actual endpoints if building a real backend
API_SUBMIT_URL = "http://your-backend.com/api/v1/submit_arch_job"
API_STATUS_URL = "http://your-backend.com/api/v1/job_status/{job_id}"
API_RESULT_URL = "http://your-backend.com/api/v1/job_result/{job_id}" # Might return data directly or a URL

# ─── 2. State Initialization & Authentication ───────────────────────────────

def initialize_state():
    """Initializes all necessary session state variables."""
    defaults = {
        'logged_in': False,
        'username': None,
        'current_job_id': None,
        'job_status': 'IDLE', # IDLE, SUBMITTED, PENDING, PROCESSING, COMPLETED, FAILED
        'job_progress': {}, # Progress dict per job_id
        'job_errors': {},   # Error dict per job_id
        'job_results': {},  # Stores result data/references per job_id {job_id: {'type': 'image'/'svg'/'json', 'data': path_or_data, 'params':{...}, 'prompt': '...'}}
        'selected_history_job_id': None,
        'annotations': {}, # {job_id: [annotation_objects]}
        # Input specific state
        'input_prompt': "",
        'input_staging_image_bytes': None,
        'input_staging_image_preview': None,
        'input_filename': None, # Store filename of uploaded staging image
    }
    for key, value in defaults.items():
        if key not in st.session_state:
            st.session_state[key] = value

initialize_state()

def show_login_form():
    """Displays the login form."""
    st.warning("Login Required")
    with st.form("login_form"):
        username = st.text_input("Username", key="login_user")
        password = st.text_input("Password", type="password", key="login_pass")
        submitted = st.form_submit_button("Login")
        if submitted:
            # --- !!! INSECURE - DEMO ONLY !!! ---
            if username == "arch_user" and password == "pass123":
                st.session_state.logged_in = True
                st.session_state.username = username
                st.success("Login successful!")
                time.sleep(1)
                st.rerun()
            else:
                st.error("Invalid credentials.")

# --- Authentication Gate ---
if not st.session_state.logged_in:
    show_login_form()
    st.stop()

# ─── 3. Simulated Backend Interaction Functions ───────────────────────────────

def submit_job_to_backend(payload: dict) -> tuple[str | None, str | None]:
    """Simulates submitting job, returns (job_id, error)."""
    st.info("Submitting job to backend simulation...")
    print(f"SIMULATING API SUBMIT to {API_SUBMIT_URL}")
    # In reality: response = requests.post(API_SUBMIT_URL, json=payload, headers=auth_headers)
    time.sleep(1.5) # Simulate network + queue time
    if random.random() < 0.95:
        job_id = f"archjob_{uuid.uuid4().hex[:12]}"
        print(f"API Submit SUCCESS: Job ID = {job_id}")
        st.session_state.job_progress[job_id] = 0
        st.session_state.job_errors[job_id] = None
        # Store essential info with job immediately
        st.session_state.job_results[job_id] = {
            'type': None, 'data': None, # Will be filled on completion
            'params': payload.get('parameters', {}), # Store settings used
            'prompt': payload.get('prompt', '')
        }
        return job_id, None
    else:
        error_msg = "Simulated API Error: Failed to submit (server busy/invalid payload)."
        print(f"API Submit FAILED: {error_msg}")
        return None, error_msg

def check_job_status_backend(job_id: str) -> tuple[str, dict | None]:
    """Simulates checking job status, returns (status, result_info | None)."""
    status_url = API_STATUS_URL.format(job_id=job_id)
    print(f"SIMULATING API STATUS CHECK: {status_url}")
    # In reality: response = requests.get(status_url, headers=auth_headers)
    time.sleep(0.7) # Simulate network latency

    if job_id not in st.session_state.job_progress:
        st.session_state.job_progress[job_id] = 0

    current_progress = st.session_state.job_progress[job_id]
    status = "UNKNOWN"
    result_info = None

    # Simulate progress and potential states
    if current_progress < 0.1:
        status = "PENDING"
        st.session_state.job_progress[job_id] += random.uniform(0.05, 0.15)
    elif current_progress < 0.9:
        status = "PROCESSING"
        st.session_state.job_progress[job_id] += random.uniform(0.1, 0.3)
        # Simulate potential failure during processing
        if random.random() < 0.03: # 3% chance of failure mid-run
             status = "FAILED"
             st.session_state.job_errors[job_id] = "Simulated AI failure during processing."
             print(f"API Status SIMULATION: Job {job_id} FAILED processing.")
    elif current_progress >= 0.9: # Consider it done
        status = "COMPLETED"
        print(f"API Status SIMULATION: Job {job_id} COMPLETED.")
        # Determine simulated result type based on original request stored in job_results
        job_mode = st.session_state.job_results.get(job_id, {}).get('params', {}).get('mode', 'Unknown')

        if job_mode == "Floor Plan":
            # Simulate returning path to an SVG or structured JSON data
            placeholder_path = "assets/placeholder_floorplan.svg" # Need this file
            if not os.path.exists(placeholder_path): placeholder_path = "assets/placeholder_floorplan.json" # Fallback - need JSON too
            result_info = {'type': 'svg' if '.svg' in placeholder_path else 'json', 'data_path': placeholder_path}
        else: # Virtual Staging
            placeholder_path = "assets/placeholder_image.png" # Need this file
            result_info = {'type': 'image', 'data_path': placeholder_path}

    print(f"API Status SIMULATION: Job {job_id} Status={status}, Progress={st.session_state.job_progress.get(job_id, 0):.2f}")
    return status, result_info

def fetch_result_data(result_info: dict):
    """Simulates fetching/loading result data based on info from status check."""
    result_type = result_info['type']
    data_path = result_info['data_path'] # In real app, might be URL
    print(f"SIMULATING Fetching {result_type} result from: {data_path}")
    # In reality: if URL, use requests.get(data_path).content

    if not os.path.exists(data_path):
        print(f"ERROR: Result placeholder not found at {data_path}")
        raise FileNotFoundError(f"Result file missing: {data_path}")

    try:
        if result_type == 'image':
            img = Image.open(data_path).convert("RGB")
            return img
        elif result_type == 'svg':
            with open(data_path, 'r', encoding='utf-8') as f:
                svg_content = f.read()
            return svg_content # Return raw SVG string
        elif result_type == 'json':
            with open(data_path, 'r', encoding='utf-8') as f:
                json_data = json.load(f)
            return json_data # Return parsed JSON
        else:
            raise ValueError(f"Unsupported result type: {result_type}")
    except Exception as e:
        print(f"ERROR loading result from {data_path}: {e}")
        raise

# ─── 4. Sidebar UI ───────────────────────────────────────────────────────────
with st.sidebar:
    st.header(f"πŸ—οΈ ArchSketch AI")
    st.caption(f"User: {st.session_state.username}")
    if st.button("Logout", key="logout_btn"):
        # Clear sensitive parts of state, re-initialize others
        keys_to_clear = list(st.session_state.keys())
        for key in keys_to_clear:
            del st.session_state[key]
        initialize_state()
        st.rerun()
    st.markdown("---")

    st.header("βš™οΈ Project Configuration")

    # Disable controls while job is active
    ui_disabled = st.session_state.job_status in ["SUBMITTED", "PENDING", "PROCESSING"]

    mode = st.radio("Mode", ["Floor Plan", "Virtual Staging"], key="mode_radio", disabled=ui_disabled)

    # --- Conditional Input for Staging ---
    if mode == "Virtual Staging":
        staging_image_file = st.file_uploader(
            "Upload Empty Room Image:",
            type=["png", "jpg", "jpeg", "webp"],
            key="staging_uploader",
            disabled=ui_disabled,
            help="Required for Virtual Staging mode."
        )
        if staging_image_file:
            if staging_image_file.name != st.session_state.input_filename: # Detect new upload
                 st.info("Processing staging image...")
                 try:
                     img_bytes = staging_image_file.getvalue()
                     image = Image.open(io.BytesIO(img_bytes)).convert("RGB")
                     image.thumbnail((1024, 1024), Image.Resampling.LANCZOS) # Resize preview
                     st.session_state.input_staging_image_bytes = img_bytes # Store bytes for API
                     st.session_state.input_staging_image_preview = image
                     st.session_state.input_filename = staging_image_file.name
                     st.success("Staging image loaded.")
                     # Don't rerun here, let user configure other options
                 except UnidentifiedImageError:
                     st.error("Invalid image file.")
                     st.session_state.input_staging_image_bytes = None
                     st.session_state.input_staging_image_preview = None
                     st.session_state.input_filename = None
                 except Exception as e:
                      st.error(f"Error loading image: {e}")
                      st.session_state.input_staging_image_bytes = None
                      st.session_state.input_staging_image_preview = None
                      st.session_state.input_filename = None

        elif st.session_state.input_filename: # User cleared the uploader
             st.session_state.input_staging_image_bytes = None
             st.session_state.input_staging_image_preview = None
             st.session_state.input_filename = None


    st.markdown("---")
    st.header("✨ AI Parameters")
    # Note: Different models might be chosen by the backend based on mode/style
    model_hint = st.selectbox("Model Preference (Hint for Backend)", ["Auto", "GPT‑4o (Text/Layout)", "Stable Diffusion (Image Gen)", "ControlNet (Editing)"], key="model_select", disabled=ui_disabled)
    style = st.selectbox("Style Preset", ["Modern", "Minimalist", "Rustic", "Industrial", "Coastal", "Custom"], key="style_select", disabled=ui_disabled)
    resolution = st.select_slider("Target Resolution (Approx.)", options=[512, 768, 1024], value=768, key="res_slider", disabled=ui_disabled)

    with st.expander("Optional Metadata"):
        project_id = st.text_input("Project ID", key="proj_id_input", disabled=ui_disabled)
        location = st.text_input("Location / Address", key="loc_input", disabled=ui_disabled)
        client_notes = st.text_area("Client Notes", key="notes_area", disabled=ui_disabled)

# ─── 5. Main Area UI ─────────────────────────────────────────────────────────

st.title("Advanced AI Architectural Visualizer")

# --- Prompt Input Area ---
st.subheader("πŸ“ Describe Your Request")
prompt_text = st.text_area(
    "Enter detailed prompt:",
    placeholder=(
        "Floor Plan Example: 'Generate a detailed 2D floor plan SVG for a 4-bedroom modern farmhouse, approx 2500 sq ft, main floor master suite, large open concept kitchen/living area, separate office, mudroom entrance.'\n"
        "Staging Example: 'Virtually stage the uploaded living room image in a minimalist Scandinavian style. Include a light grey sectional sofa, a geometric rug, light wood coffee table, and several potted plants. Ensure bright, natural lighting.'"
    ),
    height=150,
    key="prompt_input",
    disabled=ui_disabled # Disable if job running
)
st.session_state.input_prompt = prompt_text # Keep state updated

# --- Submit Button ---
can_submit = bool(st.session_state.input_prompt.strip())
if mode == "Virtual Staging":
    can_submit = can_submit and (st.session_state.input_staging_image_bytes is not None)

submit_button = st.button(
    "πŸš€ Submit Visualization Job",
    key="submit_btn",
    use_container_width=True,
    disabled=ui_disabled or not can_submit,
    help="Requires a prompt. Staging mode also requires an uploaded image."
)

if not can_submit and not ui_disabled:
     if mode == "Virtual Staging" and not st.session_state.input_staging_image_bytes:
         st.warning("Please upload an image for Virtual Staging mode.")
     elif not st.session_state.input_prompt.strip():
          st.warning("Please enter a prompt describing your request.")


# --- Job Submission Logic ---
if submit_button:
    st.session_state.job_status = "SUBMITTED"
    st.session_state.current_job_id = None # Clear old ID before new submission attempt
    st.session_state.ai_result_image = None # Clear old result display

    # Prepare Payload
    api_payload = {
        "prompt": st.session_state.input_prompt,
        "parameters": {
            "mode": mode,
            "model_preference": model_hint,
            "style": style,
            "resolution": resolution,
            "project_id": project_id,
            "location": location,
            "client_notes": client_notes,
        },
        "user_id": st.session_state.username,
    }

    # Add image data for staging mode (handle carefully in production!)
    if mode == "Virtual Staging" and st.session_state.input_staging_image_bytes:
        # Option 1: Send as base64 (simpler for demo, BAD for large files)
        api_payload["base_image_b64"] = base64.b64encode(st.session_state.input_staging_image_bytes).decode('utf-8')
        api_payload["base_image_filename"] = st.session_state.input_filename
        # Option 2 (Production): Upload to S3/GCS first, send URL/key
        # api_payload["base_image_url"] = "s3://bucket/path/to/uploaded_image.jpg"

    job_id, error = submit_job_to_backend(api_payload)

    if job_id:
        st.session_state.current_job_id = job_id
        st.session_state.job_status = "PENDING" # Move to pending after successful submit
        st.session_state.selected_history_job_id = job_id # Auto-select the new job
        # Store params with result structure immediately
        if job_id in st.session_state.job_results:
            st.session_state.job_results[job_id]['params'] = api_payload['parameters']
            st.session_state.job_results[job_id]['prompt'] = api_payload['prompt']

        st.success(f"Job submitted! ID: {job_id}. Status will update below.")
        st.rerun() # Start the polling loop
    else:
        st.error(f"Job submission failed: {error}")
        st.session_state.job_status = "FAILED"


# --- Status & Result Display Area ---
st.markdown("---")
st.subheader("πŸ“Š Job Status & Result")

current_job_id = st.session_state.current_job_id
status = st.session_state.job_status

if not current_job_id:
    st.info("Submit a job using the controls above.")
else:
    # Display status updates
    if status == "SUBMITTED":
        st.warning(f"Job Status: Submitted... Waiting for confirmation (ID: {current_job_id})")
        time.sleep(2) # Short delay before first poll
        st.rerun()
    elif status == "PENDING":
        st.info(f"Job Status: Pending in queue... (ID: {current_job_id})")
        time.sleep(5) # Poll interval
        st.rerun()
    elif status == "PROCESSING":
        progress = st.session_state.job_progress.get(current_job_id, 0)
        st.progress(min(progress, 1.0), text=f"Job Status: Processing... ({int(min(progress,1.0)*100)}%) (ID: {current_job_id})")
        time.sleep(3) # Poll interval during processing
        st.rerun()
    elif status == "COMPLETED":
        st.success(f"Job Status: Completed! (ID: {current_job_id})")
        # Result display handled below in results/history section
    elif status == "FAILED":
        error_msg = st.session_state.job_errors.get(current_job_id, "Unknown error")
        st.error(f"Job Status: Failed! (ID: {current_job_id}) - Error: {error_msg}")
    elif status == "IDLE":
         st.info("Submit a job to see status.")
    else: # Should not happen
        st.error(f"Unknown Job Status: {status}")

    # --- Status Update Logic (if job is active) ---
    if status in ["SUBMITTED", "PENDING", "PROCESSING"]:
        new_status, result_info = check_job_status_backend(current_job_id)
        st.session_state.job_status = new_status

        if new_status == "COMPLETED" and result_info:
            try:
                result_data = fetch_result_data(result_info)
                # Store result data associated with job_id
                st.session_state.job_results[current_job_id]['type'] = result_info['type']
                st.session_state.job_results[current_job_id]['data'] = result_data
                st.session_state.selected_history_job_id = current_job_id # Ensure completed job is selected
                st.rerun() # Rerun to display result
            except Exception as e:
                st.error(f"Failed to load result data: {e}")
                st.session_state.job_status = "FAILED"
                st.session_state.job_errors[current_job_id] = f"Failed to load result: {e}"
                st.rerun()
        elif new_status == "FAILED":
             if not st.session_state.job_errors.get(current_job_id):
                  st.session_state.job_errors[current_job_id] = "Job failed during processing (unknown reason)."
             st.rerun() # Rerun to show failed status


# --- Result Display / History / Annotation Area ---
st.markdown("---")
col_results, col_history = st.columns([3, 1]) # Main area for result, smaller sidebar for history

with col_history:
    st.subheader("πŸ“š History")
    if not st.session_state.job_results:
        st.caption("No jobs run yet in this session.")
    else:
        # Display history items (most recent first)
        sorted_job_ids = sorted(st.session_state.job_results.keys(), reverse=True)
        for job_id in sorted_job_ids:
            job_info = st.session_state.job_results[job_id]
            prompt_short = job_info.get('prompt', 'No Prompt')[:40] + "..." if len(job_info.get('prompt', '')) > 40 else job_info.get('prompt', 'No Prompt')
            mode_display = job_info.get('params',{}).get('mode', '?')
            item_label = f"[{mode_display}] {prompt_short}"

            # Use button to select history item
            if st.button(item_label, key=f"history_{job_id}", use_container_width=True,
                         help=f"View result for Job ID: {job_id}\nPrompt: {job_info.get('prompt', '')}"):
                st.session_state.selected_history_job_id = job_id
                st.rerun() # Rerun to update the main display

        if st.session_state.job_results:
             st.download_button(
                 "⬇️ Export History (JSON)",
                 data=json.dumps(st.session_state.job_results, indent=2, default=str), # Default=str for non-serializable
                 file_name="archsketch_history.json",
                 mime="application/json"
            )


with col_results:
    selected_job_id = st.session_state.selected_history_job_id
    if not selected_job_id or selected_job_id not in st.session_state.job_results:
         st.info("Select a job from the history panel to view details and annotate.")
    else:
        result_info = st.session_state.job_results[selected_job_id]
        result_type = result_info.get('type')
        result_data = result_info.get('data')
        result_params = result_info.get('params', {})
        result_prompt = result_info.get('prompt', 'N/A')

        st.subheader(f"πŸ” Viewing Result: {selected_job_id}")
        st.caption(f"**Mode:** {result_params.get('mode', 'N/A')} | **Style:** {result_params.get('style', 'N/A')}")
        st.markdown(f"**Prompt:** *{result_prompt}*")

        display_image = None # Image to use for canvas background

        if result_type == 'image' and isinstance(result_data, Image.Image):
            st.image(result_data, caption="Generated Visualization", use_column_width=True)
            display_image = result_data
            # Add image download button
            buf = BytesIO(); result_data.save(buf, format="PNG")
            st.download_button("⬇️ Download Image (PNG)", buf.getvalue(), f"{selected_job_id}_result.png", "image/png")

        elif result_type == 'svg' and isinstance(result_data, str):
             st.image(result_data, caption="Generated Floor Plan (SVG)", use_column_width=True)
             # SVG Download
             st.download_button("⬇️ Download SVG", result_data, f"{selected_job_id}_floorplan.svg", "image/svg+xml")
             # Cannot easily use SVG as canvas background directly - maybe render SVG to PNG first?
             st.warning("Annotation on SVG is not directly supported in this demo. Showing base image if available.")
             # If staging mode produced SVG somehow (unlikely), use the input image for annotation context
             if result_params.get('mode') == 'Virtual Staging' and st.session_state.input_staging_image_preview:
                  display_image = st.session_state.input_staging_image_preview

        elif result_type == 'json' and isinstance(result_data, dict):
            st.json(result_data, expanded=False)
            st.caption("Generated Structured Data (JSON)")
            # JSON Download
            st.download_button("⬇️ Download JSON", json.dumps(result_data, indent=2), f"{selected_job_id}_data.json", "application/json")
            st.warning("Annotation not applicable for JSON results. Showing base image if available.")
            if result_params.get('mode') == 'Virtual Staging' and st.session_state.input_staging_image_preview:
                  display_image = st.session_state.input_staging_image_preview
        elif result_data is None:
             st.warning("Result data is not available for this job (may still be processing or failed).")
        else:
            st.error("Result type or data is invalid.")


        # --- Annotation Canvas ---
        if display_image:
            st.markdown("---")
            st.subheader("✏️ Annotate / Edit")
            # Load existing annotations for this job_id if they exist
            initial_drawing = {"objects": st.session_state.annotations.get(selected_job_id, [])}

            canvas = st_canvas(
                fill_color="rgba(255, 0, 0, 0.2)", # Red annotation
                stroke_width=3,
                stroke_color="#FF0000",
                background_image=display_image,
                update_streamlit=[" Mosul", "mouseup"], # Update on drawing release
                height=500, # Adjust height as needed
                width=700, # Adjust width as needed
                drawing_mode=st.selectbox("Drawing tool:", ("freedraw", "line", "rect", "circle", "transform"), key=f"draw_mode_{selected_job_id}"),
                key=f"canvas_{selected_job_id}" # Key tied to job ID
                # Removed initial_drawing for simplicity now, add back if needed carefully
            )

            # Save annotations when canvas updates
            if canvas.json_data is not None and canvas.json_data["objects"]:
                 st.session_state.annotations[selected_job_id] = canvas.json_data["objects"]

            # Display current annotations (optional) & Export
            current_annotations = st.session_state.annotations.get(selected_job_id)
            if current_annotations:
                with st.expander("View/Export Current Annotations (JSON)"):
                    st.json(current_annotations)
                    st.download_button(
                         "⬇️ Export Annotations",
                         data=json.dumps({selected_job_id: current_annotations}, indent=2),
                         file_name=f"{selected_job_id}_annotations.json",
                         mime="application/json"
                    )
        else:
             st.caption("Annotation requires a viewable image result.")


# ─── Footer & Disclaimer ─────────────────────────────────────────────────────
st.markdown("---")
st.warning("""
    **Disclaimer:** This is an **advanced conceptual blueprint**. User authentication is **not secure**.
    Backend API calls, asynchronous job handling, status polling, AI model execution (image generation, floor plan logic, staging),
    and result data fetching are **simulated**. Building the real backend requires substantial AI and infrastructure expertise.
""")