Spaces:
Sleeping
Sleeping
File size: 7,992 Bytes
c7c64f3 e490e03 309eec4 c7c64f3 773f0cf 2c362d2 309eec4 10c7dea 3acbc9c 309eec4 10c7dea 773f0cf c7c64f3 773f0cf 10c7dea e490e03 c7c64f3 e490e03 10c7dea 2c362d2 b3a1f0c c7c64f3 2c362d2 67e3963 e490e03 c7c64f3 e490e03 773f0cf c7c64f3 67e3963 72a73ff e490e03 c7c64f3 e490e03 c7c64f3 773f0cf c7c64f3 773f0cf c7c64f3 773f0cf c7c64f3 773f0cf c7c64f3 773f0cf c7c64f3 773f0cf 309eec4 c7c64f3 773f0cf c7c64f3 10c7dea 773f0cf c7c64f3 773f0cf 2c362d2 3acbc9c 10c7dea e490e03 c7c64f3 e490e03 773f0cf 2c362d2 10c7dea 773f0cf 3acbc9c e490e03 3acbc9c 773f0cf e490e03 10c7dea 773f0cf c7c64f3 e490e03 c7c64f3 773f0cf e490e03 c7c64f3 e490e03 523228c c7c64f3 e490e03 773f0cf e490e03 523228c 773f0cf 3acbc9c d826a13 c7c64f3 523228c c7c64f3 773f0cf e490e03 c7c64f3 e490e03 523228c 3acbc9c c7c64f3 523228c 773f0cf c7c64f3 d826a13 773f0cf c7c64f3 3acbc9c 773f0cf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 |
# app.py β BizIntelΒ AIΒ Ultra (Geminiβ―1.5Β Pro, CSVβ―+β―DB, interactive Plotly, pro summary)
import os
import tempfile
from io import StringIO
import pandas as pd
import streamlit as st
import google.generativeai as genai
import plotly.graph_objects as go
from tools.csv_parser import parse_csv_tool
from tools.plot_generator import plot_sales_tool
from tools.forecaster import forecast_tool
from tools.visuals import histogram_tool, scatter_matrix_tool, corr_heatmap_tool
from db_connector import fetch_data_from_db, list_tables, SUPPORTED_ENGINES
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# 1. GEMINI CONFIG
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
genai.configure(api_key=os.getenv("GEMINI_APIKEY"))
gemini = genai.GenerativeModel(
"gemini-1.5-pro-latest",
generation_config={
"temperature": 0.7,
"top_p": 0.9,
"response_mime_type": "text/plain",
},
)
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# 2. PAGE SETUP
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
st.set_page_config(page_title="BizIntelΒ AIΒ Ultra", layout="wide")
st.title("π BizIntelΒ AIΒ UltraΒ β Advanced Analytics + GeminiΒ 1.5Β Pro")
TEMP_DIR = tempfile.gettempdir()
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# 3. DATA SOURCE (CSV OR DB)
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
source = st.radio("Select data source", ["Upload CSV", "Connect to SQL Database"])
csv_path = None
if source == "Upload CSV":
up = st.file_uploader("Upload CSV (β€β―200β―MB)", type=["csv"])
if up:
csv_path = os.path.join(TEMP_DIR, up.name)
with open(csv_path, "wb") as f:
f.write(up.read())
st.success("CSV saved β
")
else:
engine = st.selectbox("DB engine", SUPPORTED_ENGINES)
conn = st.text_input("SQLAlchemy connection string")
if conn:
try:
tbls = list_tables(conn)
tbl = st.selectbox("Table", tbls)
if st.button("Fetch table"):
csv_path = fetch_data_from_db(conn, tbl)
st.success(f"Fetched **{tbl}** as CSV β
")
except Exception as e:
st.error(f"Connection failed: {e}")
st.stop()
if csv_path is None:
st.stop()
# Download original CSV
with open(csv_path, "rb") as f:
st.download_button("β¬οΈΒ Download original CSV", f, file_name=os.path.basename(csv_path))
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# 4. PREVIEW & DATE COLUMN
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
df_preview = pd.read_csv(csv_path, nrows=5)
st.dataframe(df_preview)
date_col = st.selectbox("Select date/time column for forecasting", df_preview.columns)
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# 5. LOCAL TOOLS: SUMMARY, SALES TREND, FORECAST
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
with st.spinner("Parsing CSVβ¦"):
summary_text = parse_csv_tool(csv_path)
with st.spinner("Generating sales trendβ¦"):
sales_fig = plot_sales_tool(csv_path, date_col=date_col)
if isinstance(sales_fig, go.Figure):
st.plotly_chart(sales_fig, use_container_width=True)
else:
st.warning(sales_fig)
with st.spinner("Forecastingβ¦"):
forecast_text = forecast_tool(csv_path, date_col=date_col)
forecast_png = "forecast_plot.png" if os.path.exists("forecast_plot.png") else None
if forecast_png:
st.image(forecast_png, caption="Sales Forecast", use_container_width=True)
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# 6. GEMINI STRATEGY
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
prompt = (
f"You are **BizIntel Strategist AI**.\n\n"
f"### CSV Summary\n```\n{summary_text}\n```\n\n"
f"### Forecast Output\n```\n{forecast_text}\n```\n\n"
"Return **Markdown** with:\n"
"1. Five key insights\n"
"2. Three actionable strategies (with expected impact)\n"
"3. Risk factors or anomalies\n"
"4. Suggested additional visuals\n"
)
st.subheader("π Strategy Recommendations (GeminiΒ 1.5Β Pro)")
with st.spinner("Generating insightsβ¦"):
strategy_md = gemini.generate_content(prompt).text
st.markdown(strategy_md)
st.download_button("β¬οΈΒ Download Strategy (.md)", strategy_md, file_name="strategy.md")
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# 7. PROFESSIONAL CSV SUMMARY
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
st.markdown("---")
st.subheader("π CSV Overview")
full_df = pd.read_csv(csv_path)
total_rows = len(full_df)
num_cols = len(full_df.columns)
missing_pct = full_df.isna().mean().mean() * 100
c1, c2, c3 = st.columns(3)
c1.metric("Rows", f"{total_rows:,}")
c2.metric("Columns", str(num_cols))
c3.metric("MissingΒ %", f"{missing_pct:.1f}%")
with st.expander("πΒ Detailed descriptive statistics"):
stats_df = full_df.describe().T.reset_index().rename(columns={"index": "Feature"})
st.dataframe(
stats_df.style.format(precision=2).background_gradient(cmap="Blues"),
use_container_width=True,
)
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# 8. OPTIONAL EXPLORATORY VISUALS
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
st.markdown("---")
st.subheader("π Optional Exploratory Visuals")
num_cols_only = df_preview.select_dtypes("number").columns
if st.checkbox("Histogram"):
hcol = st.selectbox("Variable", num_cols_only, key="hist")
st.plotly_chart(histogram_tool(csv_path, hcol), use_container_width=True)
if st.checkbox("Scatterβmatrix"):
sm_cols = st.multiselect("Choose up to 5 columns", num_cols_only, default=num_cols_only[:3])
if sm_cols:
st.plotly_chart(scatter_matrix_tool(csv_path, sm_cols), use_container_width=True)
if st.checkbox("Correlation heatβmap"):
st.plotly_chart(corr_heatmap_tool(csv_path), use_container_width=True)
|