File size: 7,992 Bytes
c7c64f3
e490e03
309eec4
 
c7c64f3
773f0cf
2c362d2
309eec4
10c7dea
3acbc9c
309eec4
10c7dea
773f0cf
c7c64f3
 
773f0cf
10c7dea
e490e03
c7c64f3
e490e03
10c7dea
2c362d2
b3a1f0c
c7c64f3
 
 
 
 
2c362d2
67e3963
e490e03
c7c64f3
e490e03
773f0cf
c7c64f3
67e3963
72a73ff
 
e490e03
c7c64f3
e490e03
c7c64f3
 
773f0cf
c7c64f3
 
 
 
773f0cf
c7c64f3
773f0cf
 
c7c64f3
773f0cf
c7c64f3
 
773f0cf
c7c64f3
 
 
 
 
773f0cf
 
 
 
 
309eec4
 
c7c64f3
773f0cf
c7c64f3
10c7dea
773f0cf
c7c64f3
773f0cf
2c362d2
 
3acbc9c
10c7dea
e490e03
c7c64f3
e490e03
773f0cf
2c362d2
10c7dea
773f0cf
3acbc9c
e490e03
3acbc9c
773f0cf
e490e03
10c7dea
773f0cf
c7c64f3
 
e490e03
c7c64f3
 
773f0cf
e490e03
c7c64f3
e490e03
523228c
 
c7c64f3
 
e490e03
773f0cf
e490e03
 
 
523228c
 
 
773f0cf
3acbc9c
d826a13
c7c64f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
523228c
c7c64f3
 
 
 
 
 
773f0cf
e490e03
c7c64f3
e490e03
523228c
3acbc9c
 
c7c64f3
523228c
773f0cf
c7c64f3
 
d826a13
773f0cf
c7c64f3
 
 
3acbc9c
773f0cf
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
# app.py  β€”  BizIntelΒ AIΒ Ultra  (Geminiβ€―1.5Β Pro, CSVβ€―+β€―DB, interactive Plotly, pro summary)

import os
import tempfile
from io import StringIO

import pandas as pd
import streamlit as st
import google.generativeai as genai
import plotly.graph_objects as go

from tools.csv_parser import parse_csv_tool
from tools.plot_generator import plot_sales_tool
from tools.forecaster import forecast_tool
from tools.visuals import histogram_tool, scatter_matrix_tool, corr_heatmap_tool
from db_connector import fetch_data_from_db, list_tables, SUPPORTED_ENGINES

# ──────────────────────────────────────────────────────────────
# 1.  GEMINI CONFIG
# ──────────────────────────────────────────────────────────────
genai.configure(api_key=os.getenv("GEMINI_APIKEY"))
gemini = genai.GenerativeModel(
    "gemini-1.5-pro-latest",
    generation_config={
        "temperature": 0.7,
        "top_p": 0.9,
        "response_mime_type": "text/plain",
    },
)

# ──────────────────────────────────────────────────────────────
# 2.  PAGE SETUP
# ──────────────────────────────────────────────────────────────
st.set_page_config(page_title="BizIntelΒ AIΒ Ultra", layout="wide")
st.title("πŸ“Š BizIntelΒ AIΒ Ultra – Advanced Analytics + GeminiΒ 1.5Β Pro")

TEMP_DIR = tempfile.gettempdir()

# ──────────────────────────────────────────────────────────────
# 3.  DATA SOURCE (CSV OR DB)
# ──────────────────────────────────────────────────────────────
source = st.radio("Select data source", ["Upload CSV", "Connect to SQL Database"])
csv_path = None

if source == "Upload CSV":
    up = st.file_uploader("Upload CSV (≀ 200β€―MB)", type=["csv"])
    if up:
        csv_path = os.path.join(TEMP_DIR, up.name)
        with open(csv_path, "wb") as f:
            f.write(up.read())
        st.success("CSV saved βœ…")

else:
    engine = st.selectbox("DB engine", SUPPORTED_ENGINES)
    conn = st.text_input("SQLAlchemy connection string")
    if conn:
        try:
            tbls = list_tables(conn)
            tbl = st.selectbox("Table", tbls)
            if st.button("Fetch table"):
                csv_path = fetch_data_from_db(conn, tbl)
                st.success(f"Fetched **{tbl}** as CSV βœ…")
        except Exception as e:
            st.error(f"Connection failed: {e}")
            st.stop()

if csv_path is None:
    st.stop()

# Download original CSV
with open(csv_path, "rb") as f:
    st.download_button("⬇️ Download original CSV", f, file_name=os.path.basename(csv_path))

# ──────────────────────────────────────────────────────────────
# 4.  PREVIEW & DATE COLUMN
# ──────────────────────────────────────────────────────────────
df_preview = pd.read_csv(csv_path, nrows=5)
st.dataframe(df_preview)
date_col = st.selectbox("Select date/time column for forecasting", df_preview.columns)

# ──────────────────────────────────────────────────────────────
# 5.  LOCAL TOOLS: SUMMARY, SALES TREND, FORECAST
# ──────────────────────────────────────────────────────────────
with st.spinner("Parsing CSV…"):
    summary_text = parse_csv_tool(csv_path)

with st.spinner("Generating sales trend…"):
    sales_fig = plot_sales_tool(csv_path, date_col=date_col)
if isinstance(sales_fig, go.Figure):
    st.plotly_chart(sales_fig, use_container_width=True)
else:
    st.warning(sales_fig)

with st.spinner("Forecasting…"):
    forecast_text = forecast_tool(csv_path, date_col=date_col)
    forecast_png = "forecast_plot.png" if os.path.exists("forecast_plot.png") else None

if forecast_png:
    st.image(forecast_png, caption="Sales Forecast", use_container_width=True)

# ──────────────────────────────────────────────────────────────
# 6.  GEMINI STRATEGY
# ──────────────────────────────────────────────────────────────
prompt = (
    f"You are **BizIntel Strategist AI**.\n\n"
    f"### CSV Summary\n```\n{summary_text}\n```\n\n"
    f"### Forecast Output\n```\n{forecast_text}\n```\n\n"
    "Return **Markdown** with:\n"
    "1. Five key insights\n"
    "2. Three actionable strategies (with expected impact)\n"
    "3. Risk factors or anomalies\n"
    "4. Suggested additional visuals\n"
)

st.subheader("πŸš€ Strategy Recommendations (GeminiΒ 1.5Β Pro)")
with st.spinner("Generating insights…"):
    strategy_md = gemini.generate_content(prompt).text
st.markdown(strategy_md)
st.download_button("⬇️ Download Strategy (.md)", strategy_md, file_name="strategy.md")

# ──────────────────────────────────────────────────────────────
# 7.  PROFESSIONAL CSV SUMMARY
# ──────────────────────────────────────────────────────────────
st.markdown("---")
st.subheader("πŸ“‘ CSV Overview")

full_df = pd.read_csv(csv_path)
total_rows = len(full_df)
num_cols   = len(full_df.columns)
missing_pct = full_df.isna().mean().mean() * 100

c1, c2, c3 = st.columns(3)
c1.metric("Rows",     f"{total_rows:,}")
c2.metric("Columns",  str(num_cols))
c3.metric("MissingΒ %", f"{missing_pct:.1f}%")

with st.expander("πŸ”ŽΒ Detailed descriptive statistics"):
    stats_df = full_df.describe().T.reset_index().rename(columns={"index": "Feature"})
    st.dataframe(
        stats_df.style.format(precision=2).background_gradient(cmap="Blues"),
        use_container_width=True,
    )

# ──────────────────────────────────────────────────────────────
# 8.  OPTIONAL EXPLORATORY VISUALS
# ──────────────────────────────────────────────────────────────
st.markdown("---")
st.subheader("πŸ” Optional Exploratory Visuals")

num_cols_only = df_preview.select_dtypes("number").columns

if st.checkbox("Histogram"):
    hcol = st.selectbox("Variable", num_cols_only, key="hist")
    st.plotly_chart(histogram_tool(csv_path, hcol), use_container_width=True)

if st.checkbox("Scatter‑matrix"):
    sm_cols = st.multiselect("Choose up to 5 columns", num_cols_only, default=num_cols_only[:3])
    if sm_cols:
        st.plotly_chart(scatter_matrix_tool(csv_path, sm_cols), use_container_width=True)

if st.checkbox("Correlation heat‑map"):
    st.plotly_chart(corr_heatmap_tool(csv_path), use_container_width=True)