Spaces:
Sleeping
Sleeping
Update tools/forecaster.py
Browse files- tools/forecaster.py +12 -30
tools/forecaster.py
CHANGED
|
@@ -1,50 +1,32 @@
|
|
| 1 |
import pandas as pd
|
| 2 |
-
import plotly.graph_objects as go
|
| 3 |
from statsmodels.tsa.arima.model import ARIMA
|
|
|
|
| 4 |
|
| 5 |
-
def
|
| 6 |
"""
|
| 7 |
-
Forecast next 3 periods
|
|
|
|
| 8 |
"""
|
| 9 |
df = pd.read_csv(file_path)
|
| 10 |
|
| 11 |
try:
|
| 12 |
df[date_col] = pd.to_datetime(df[date_col])
|
| 13 |
except Exception:
|
| 14 |
-
return f"β
|
| 15 |
|
| 16 |
-
if
|
| 17 |
-
return "β
|
| 18 |
|
| 19 |
df.set_index(date_col, inplace=True)
|
| 20 |
-
model = ARIMA(df[
|
| 21 |
model_fit = model.fit()
|
| 22 |
forecast = model_fit.forecast(steps=3)
|
| 23 |
|
| 24 |
-
#
|
| 25 |
-
conf_int = model_fit.get_forecast(steps=3).conf_int()
|
| 26 |
-
future_index = forecast.index
|
| 27 |
-
|
| 28 |
fig = go.Figure()
|
| 29 |
-
fig.add_scatter(x=df.index, y=df[
|
| 30 |
-
fig.add_scatter(x=
|
| 31 |
-
fig.
|
| 32 |
-
x=future_index,
|
| 33 |
-
y=conf_int.iloc[:, 0],
|
| 34 |
-
mode="lines",
|
| 35 |
-
fill=None,
|
| 36 |
-
line=dict(width=0),
|
| 37 |
-
showlegend=False,
|
| 38 |
-
)
|
| 39 |
-
fig.add_scatter(
|
| 40 |
-
x=future_index,
|
| 41 |
-
y=conf_int.iloc[:, 1],
|
| 42 |
-
mode="lines",
|
| 43 |
-
fill="tonexty",
|
| 44 |
-
name="95% CI",
|
| 45 |
-
line=dict(width=0),
|
| 46 |
-
)
|
| 47 |
-
fig.update_layout(title="Sales Forecast", template="plotly_dark")
|
| 48 |
fig.write_image("forecast_plot.png")
|
| 49 |
|
| 50 |
return forecast.to_frame(name="Forecast").to_string()
|
|
|
|
| 1 |
import pandas as pd
|
|
|
|
| 2 |
from statsmodels.tsa.arima.model import ARIMA
|
| 3 |
+
import plotly.graph_objects as go
|
| 4 |
|
| 5 |
+
def forecast_metric_tool(file_path: str, date_col: str, value_col: str):
|
| 6 |
"""
|
| 7 |
+
Forecast next 3 periods for any numeric metric.
|
| 8 |
+
Saves PNG and returns forecast DataFrame as text.
|
| 9 |
"""
|
| 10 |
df = pd.read_csv(file_path)
|
| 11 |
|
| 12 |
try:
|
| 13 |
df[date_col] = pd.to_datetime(df[date_col])
|
| 14 |
except Exception:
|
| 15 |
+
return f"β '{date_col}' not parseable as dates."
|
| 16 |
|
| 17 |
+
if value_col not in df.columns:
|
| 18 |
+
return f"β '{value_col}' column missing."
|
| 19 |
|
| 20 |
df.set_index(date_col, inplace=True)
|
| 21 |
+
model = ARIMA(df[value_col], order=(1, 1, 1))
|
| 22 |
model_fit = model.fit()
|
| 23 |
forecast = model_fit.forecast(steps=3)
|
| 24 |
|
| 25 |
+
# Plot
|
|
|
|
|
|
|
|
|
|
| 26 |
fig = go.Figure()
|
| 27 |
+
fig.add_scatter(x=df.index, y=df[value_col], mode="lines", name=value_col)
|
| 28 |
+
fig.add_scatter(x=forecast.index, y=forecast, mode="lines", name="Forecast")
|
| 29 |
+
fig.update_layout(title=f"{value_col} Forecast", template="plotly_dark")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
fig.write_image("forecast_plot.png")
|
| 31 |
|
| 32 |
return forecast.to_frame(name="Forecast").to_string()
|