Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,189 +1,269 @@
|
|
| 1 |
-
|
| 2 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
import numpy as np
|
| 4 |
-
import
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
import plotly.express as px
|
| 8 |
-
import matplotlib.pyplot as plt
|
| 9 |
from statsmodels.tsa.arima.model import ARIMA
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
|
| 11 |
-
#
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
else:
|
| 19 |
-
return pd.read_csv(uploaded)
|
| 20 |
-
except Exception as e:
|
| 21 |
-
raise st.Error(f"Error parsing file: {e}")
|
| 22 |
-
|
| 23 |
-
# โโ Helpers for SQL database โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
|
| 24 |
-
SUPPORTED_ENGINES = ["postgresql", "mysql", "mssql+pyodbc", "oracle+cx_oracle"]
|
| 25 |
-
@st.cache_data
|
| 26 |
-
def list_tables(connection_string):
|
| 27 |
-
engine = create_engine(connection_string)
|
| 28 |
-
return engine.table_names()
|
| 29 |
-
|
| 30 |
-
@st.cache_data
|
| 31 |
-
def fetch_table(connection_string, table_name):
|
| 32 |
-
engine = create_engine(connection_string)
|
| 33 |
-
return pd.read_sql_table(table_name, engine)
|
| 34 |
-
|
| 35 |
-
# โโ Streamlit page setup โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
|
| 36 |
-
st.set_page_config(
|
| 37 |
-
page_title="BizIntel AI Ultra",
|
| 38 |
-
layout="wide",
|
| 39 |
-
initial_sidebar_state="expanded",
|
| 40 |
)
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
#
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
st.
|
| 113 |
-
st.
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 134 |
try:
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
labels={metric_col: metric_col, "forecast": "Forecast"},
|
| 143 |
-
title=f"{metric_col} & 90-Day Forecast",
|
| 144 |
-
)
|
| 145 |
-
st.plotly_chart(fig_fc, use_container_width=True)
|
| 146 |
except Exception as e:
|
| 147 |
-
st.
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
2.
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
""
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# app.py โ BizIntelย AIย Ultraย v2
|
| 2 |
+
# =============================================================
|
| 3 |
+
# CSVย /ย Excelย /ย DB ingestion โข Trend + ARIMA forecast (90ย d or 3ย steps)
|
| 4 |
+
# Confidence bands โข Model explainability โข Geminiย 1.5 Pro strategy
|
| 5 |
+
# Safe Plotly writes -> /tmp โข KPI cards โข Optional EDA visuals
|
| 6 |
+
# =============================================================
|
| 7 |
+
|
| 8 |
+
import os, tempfile, warnings
|
| 9 |
+
from typing import List
|
| 10 |
+
|
| 11 |
import numpy as np
|
| 12 |
+
import pandas as pd
|
| 13 |
+
import streamlit as st
|
| 14 |
+
import plotly.graph_objects as go
|
|
|
|
|
|
|
| 15 |
from statsmodels.tsa.arima.model import ARIMA
|
| 16 |
+
from statsmodels.graphics.tsaplots import plot_acf
|
| 17 |
+
from statsmodels.tsa.seasonal import seasonal_decompose
|
| 18 |
+
from statsmodels.tools.sm_exceptions import ConvergenceWarning
|
| 19 |
+
import google.generativeai as genai
|
| 20 |
+
import matplotlib.pyplot as plt
|
| 21 |
|
| 22 |
+
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
|
| 23 |
+
# 0) Plotly safe write โ /tmp
|
| 24 |
+
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
|
| 25 |
+
TMP = tempfile.gettempdir()
|
| 26 |
+
orig_write = go.Figure.write_image
|
| 27 |
+
go.Figure.write_image = lambda self, p, *a, **k: orig_write(
|
| 28 |
+
self, os.path.join(TMP, os.path.basename(p)), *a, **k
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
)
|
| 30 |
+
|
| 31 |
+
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
|
| 32 |
+
# 1) Local helpers & DB connector
|
| 33 |
+
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
|
| 34 |
+
from tools.csv_parser import parse_csv_tool
|
| 35 |
+
from tools.plot_generator import plot_metric_tool
|
| 36 |
+
from tools.visuals import histogram_tool, scatter_matrix_tool, corr_heatmap_tool
|
| 37 |
+
from db_connector import fetch_data_from_db, list_tables, SUPPORTED_ENGINES
|
| 38 |
+
|
| 39 |
+
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
|
| 40 |
+
# 2) Gemini 1.5ย Pro
|
| 41 |
+
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
|
| 42 |
+
genai.configure(api_key=os.getenv("GEMINI_APIKEY"))
|
| 43 |
+
gemini = genai.GenerativeModel(
|
| 44 |
+
"gemini-1.5-pro-latest",
|
| 45 |
+
generation_config=dict(temperature=0.7, top_p=0.9, response_mime_type="text/plain"),
|
| 46 |
+
)
|
| 47 |
+
|
| 48 |
+
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
|
| 49 |
+
# 3) Streamlit setup
|
| 50 |
+
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
|
| 51 |
+
st.set_page_config(page_title="BizIntelย AIย Ultra", layout="wide")
|
| 52 |
+
st.title("๐ย BizIntelย AIย Ultraย โ Advanced Analyticsย +ย Geminiย 1.5ย Pro")
|
| 53 |
+
|
| 54 |
+
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
|
| 55 |
+
# 4) Data source
|
| 56 |
+
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
|
| 57 |
+
choice = st.radio("Select data source", ["Upload CSVย /ย Excel", "Connect to SQL Database"])
|
| 58 |
+
csv_path: str | None = None
|
| 59 |
+
|
| 60 |
+
if choice.startswith("Upload"):
|
| 61 |
+
up = st.file_uploader("CSVย orย Excelย (โคโฏ500โฏMB)", type=["csv","xlsx","xls"])
|
| 62 |
+
if up:
|
| 63 |
+
tmp = os.path.join(TMP, up.name)
|
| 64 |
+
with open(tmp, "wb") as f: f.write(up.read())
|
| 65 |
+
if up.name.lower().endswith(".csv"):
|
| 66 |
+
csv_path = tmp
|
| 67 |
+
else:
|
| 68 |
+
try:
|
| 69 |
+
pd.read_excel(tmp, sheet_name=0).to_csv(tmp+".csv", index=False)
|
| 70 |
+
csv_path = tmp+".csv"
|
| 71 |
+
except Exception as e:
|
| 72 |
+
st.error(f"Excel parse failed: {e}")
|
| 73 |
+
else:
|
| 74 |
+
eng = st.selectbox("DB engine", SUPPORTED_ENGINES)
|
| 75 |
+
conn = st.text_input("SQLAlchemyย connection string")
|
| 76 |
+
if conn:
|
| 77 |
+
try:
|
| 78 |
+
tbl = st.selectbox("Table", list_tables(conn))
|
| 79 |
+
if st.button("Fetch table"):
|
| 80 |
+
csv_path = fetch_data_from_db(conn, tbl)
|
| 81 |
+
st.success(f"Fetched **{tbl}**")
|
| 82 |
+
except Exception as e:
|
| 83 |
+
st.error(f"DB error: {e}")
|
| 84 |
+
|
| 85 |
+
if not csv_path:
|
| 86 |
+
st.stop()
|
| 87 |
+
|
| 88 |
+
with open(csv_path, "rb") as f:
|
| 89 |
+
st.download_button("โฌ๏ธย Download working CSV", f, file_name=os.path.basename(csv_path))
|
| 90 |
+
|
| 91 |
+
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
|
| 92 |
+
# 5) Column selectors
|
| 93 |
+
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
|
| 94 |
+
df_head = pd.read_csv(csv_path, nrows=5)
|
| 95 |
+
st.dataframe(df_head)
|
| 96 |
+
|
| 97 |
+
date_col = st.selectbox("Date/time column", df_head.columns)
|
| 98 |
+
numeric_cols = df_head.select_dtypes("number").columns.tolist()
|
| 99 |
+
metric_options = [c for c in numeric_cols if c != date_col]
|
| 100 |
+
if not metric_options:
|
| 101 |
+
st.error("No numeric columns available apart from the date column.")
|
| 102 |
+
st.stop()
|
| 103 |
+
metric_col = st.selectbox("Numeric metric column", metric_options)
|
| 104 |
+
|
| 105 |
+
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
|
| 106 |
+
# 6) Summary & trend chart
|
| 107 |
+
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
|
| 108 |
+
summary = parse_csv_tool(csv_path)
|
| 109 |
+
trend_fig = plot_metric_tool(csv_path, date_col, metric_col)
|
| 110 |
+
if isinstance(trend_fig, go.Figure):
|
| 111 |
+
st.subheader("๐ย Trend")
|
| 112 |
+
st.plotly_chart(trend_fig, use_container_width=True)
|
| 113 |
+
else:
|
| 114 |
+
st.warning(trend_fig)
|
| 115 |
+
|
| 116 |
+
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
|
| 117 |
+
# 7) Robust ARIMA + explainability
|
| 118 |
+
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
|
| 119 |
+
def build_series(path, dcol, vcol):
|
| 120 |
+
df = pd.read_csv(path, usecols=[dcol, vcol])
|
| 121 |
+
df[dcol] = pd.to_datetime(df[dcol], errors="coerce")
|
| 122 |
+
df[vcol] = pd.to_numeric(df[vcol], errors="coerce")
|
| 123 |
+
df = df.dropna(subset=[dcol, vcol]).sort_values(dcol)
|
| 124 |
+
if df.empty or df[dcol].nunique() < 2:
|
| 125 |
+
raise ValueError("Need โฅโฏ2 valid timestamps.")
|
| 126 |
+
s = df.set_index(dcol)[vcol].groupby(level=0).mean().sort_index()
|
| 127 |
+
freq = pd.infer_freq(s.index) or "D"
|
| 128 |
+
s = s.asfreq(freq).interpolate()
|
| 129 |
+
return s, freq
|
| 130 |
+
|
| 131 |
+
@st.cache_data(show_spinner="Fitting ARIMAโฆ")
|
| 132 |
+
def fit_arima(series):
|
| 133 |
+
warnings.simplefilter("ignore", ConvergenceWarning)
|
| 134 |
+
model = ARIMA(series, order=(1,1,1))
|
| 135 |
+
return model.fit()
|
| 136 |
+
|
| 137 |
+
try:
|
| 138 |
+
series, freq = build_series(csv_path, date_col, metric_col)
|
| 139 |
+
horizon = 90 if freq == "D" else 3
|
| 140 |
+
res = fit_arima(series)
|
| 141 |
+
fc = res.get_forecast(steps=horizon)
|
| 142 |
+
forecast = fc.predicted_mean
|
| 143 |
+
ci = fc.conf_int()
|
| 144 |
+
except Exception as e:
|
| 145 |
+
st.subheader(f"๐ฎย {metric_col}ย Forecast")
|
| 146 |
+
st.warning(f"Forecast failed: {e}")
|
| 147 |
+
series = forecast = ci = None
|
| 148 |
+
|
| 149 |
+
if forecast is not None:
|
| 150 |
+
# Plot with CI
|
| 151 |
+
fig = go.Figure()
|
| 152 |
+
fig.add_scatter(x=series.index, y=series, mode="lines", name=metric_col)
|
| 153 |
+
fig.add_scatter(x=forecast.index, y=forecast, mode="lines+markers", name="Forecast")
|
| 154 |
+
fig.add_scatter(x=ci.index, y=ci.iloc[:,1], mode="lines",
|
| 155 |
+
line=dict(width=0), showlegend=False)
|
| 156 |
+
fig.add_scatter(x=ci.index, y=ci.iloc[:,0], mode="lines",
|
| 157 |
+
line=dict(width=0), fill="tonexty",
|
| 158 |
+
fillcolor="rgba(255,0,0,0.25)", showlegend=False)
|
| 159 |
+
fig.update_layout(title=f"{metric_col} Forecast ({horizon}ย steps)",
|
| 160 |
+
template="plotly_dark", xaxis_title=date_col,
|
| 161 |
+
yaxis_title=metric_col)
|
| 162 |
+
st.subheader(f"๐ฎย {metric_col}ย Forecast")
|
| 163 |
+
st.plotly_chart(fig, use_container_width=True)
|
| 164 |
+
|
| 165 |
+
# ---------------- summary & interpretation ----------------
|
| 166 |
+
st.subheader("๐ย Model Summary")
|
| 167 |
+
st.code(res.summary().as_text(), language="text")
|
| 168 |
+
|
| 169 |
+
st.subheader("๐ย Coefficient Interpretation")
|
| 170 |
+
ar = res.arparams
|
| 171 |
+
ma = res.maparams
|
| 172 |
+
interp: List[str] = []
|
| 173 |
+
if ar.size:
|
| 174 |
+
interp.append(f"โขย AR(1)ย ={ar[0]:.2f} โ "
|
| 175 |
+
f"{'strong' if abs(ar[0])>0.5 else 'moderate'} "
|
| 176 |
+
"persistence in the series.")
|
| 177 |
+
if ma.size:
|
| 178 |
+
interp.append(f"โขย MA(1)ย ={ma[0]:.2f} โ "
|
| 179 |
+
f"{'large' if abs(ma[0])>0.5 else 'modest'} "
|
| 180 |
+
"shock adjustment.")
|
| 181 |
+
st.markdown("\n".join(interp) or "N/A")
|
| 182 |
+
|
| 183 |
+
# ---------------- Residual ACF ----------------
|
| 184 |
+
st.subheader("๐ย Residual Autocorrelation (ACF)")
|
| 185 |
+
plt.figure(figsize=(6,3))
|
| 186 |
+
plot_acf(res.resid.dropna(), lags=30, alpha=0.05)
|
| 187 |
+
acf_png = os.path.join(TMP, "acf.png")
|
| 188 |
+
plt.tight_layout()
|
| 189 |
+
plt.savefig(acf_png, dpi=120)
|
| 190 |
+
plt.close()
|
| 191 |
+
st.image(acf_png, use_container_width=True)
|
| 192 |
+
|
| 193 |
+
# ---------------- Backโtest ----------------
|
| 194 |
+
k = max(int(len(series)*0.2), 10)
|
| 195 |
+
train, test = series[:-k], series[-k:]
|
| 196 |
+
bt_res = ARIMA(train, order=(1,1,1)).fit()
|
| 197 |
+
bt_pred = bt_res.forecast(k)
|
| 198 |
+
mape = (abs(bt_pred - test)/test).mean()*100
|
| 199 |
+
rmse = np.sqrt(((bt_pred - test)**2).mean())
|
| 200 |
+
|
| 201 |
+
st.subheader("๐งชย Backโtest (last 20โฏ%)")
|
| 202 |
+
colA, colB = st.columns(2)
|
| 203 |
+
colA.metric("MAPE", f"{mape:.2f}ย %")
|
| 204 |
+
colB.metric("RMSE", f"{rmse:,.0f}")
|
| 205 |
+
|
| 206 |
+
# ---------------- Optional seasonal decomposition -------
|
| 207 |
+
with st.expander("Seasonal Decomposition"):
|
| 208 |
try:
|
| 209 |
+
period = {"D":7, "H":24, "M":12}.get(freq, None)
|
| 210 |
+
if period:
|
| 211 |
+
dec = seasonal_decompose(series, period=period, model="additive")
|
| 212 |
+
for comp in ["trend","seasonal","resid"]:
|
| 213 |
+
st.line_chart(getattr(dec, comp), height=150)
|
| 214 |
+
else:
|
| 215 |
+
st.info("Frequency not suited for decomposition.")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 216 |
except Exception as e:
|
| 217 |
+
st.info(f"Decomposition failed: {e}")
|
| 218 |
+
|
| 219 |
+
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
|
| 220 |
+
# 8) Gemini strategy report
|
| 221 |
+
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
|
| 222 |
+
prompt = (
|
| 223 |
+
"You are **BizIntel Strategist AI**.\n\n"
|
| 224 |
+
f"### Dataset Summary\n```\n{summary}\n```\n\n"
|
| 225 |
+
f"### {metric_col} Forecast\n```\n"
|
| 226 |
+
f"{forecast.to_string() if forecast is not None else 'N/A'}\n```\n\n"
|
| 227 |
+
"Craft a Markdown report:\n"
|
| 228 |
+
"1. Five insights\n2. Three actionable strategies\n"
|
| 229 |
+
"3. Risksย / anomalies\n4. Extra visuals to consider."
|
| 230 |
+
)
|
| 231 |
+
with st.spinner("Gemini generating strategyโฆ"):
|
| 232 |
+
md = gemini.generate_content(prompt).text
|
| 233 |
+
st.subheader("๐ย Strategyย Recommendationsย (Geminiย 1.5ย Pro)")
|
| 234 |
+
st.markdown(md)
|
| 235 |
+
st.download_button("โฌ๏ธย Downloadย Strategy (.md)", md, file_name="strategy.md")
|
| 236 |
+
|
| 237 |
+
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
|
| 238 |
+
# 9) KPI cards + detailed stats + optional EDA (unchanged)
|
| 239 |
+
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
|
| 240 |
+
fulldf = pd.read_csv(csv_path, low_memory=False)
|
| 241 |
+
rows, cols = fulldf.shape
|
| 242 |
+
miss_pct = fulldf.isna().mean().mean()*100
|
| 243 |
+
|
| 244 |
+
st.markdown("---")
|
| 245 |
+
st.subheader("๐ย Datasetย Overview")
|
| 246 |
+
c1,c2,c3 = st.columns(3)
|
| 247 |
+
c1.metric("Rows", f"{rows:,}")
|
| 248 |
+
c2.metric("Columns", cols)
|
| 249 |
+
c3.metric("Missingย %", f"{miss_pct:.1f}%")
|
| 250 |
+
|
| 251 |
+
with st.expander("Descriptiveย Statistics"):
|
| 252 |
+
st.dataframe(fulldf.describe().T.style.format(precision=2).background_gradient("Blues"),
|
| 253 |
+
use_container_width=True)
|
| 254 |
+
|
| 255 |
+
st.markdown("---")
|
| 256 |
+
st.subheader("๐ย Optionalย Exploratoryย Visuals")
|
| 257 |
+
num_cols = fulldf.select_dtypes("number").columns.tolist()
|
| 258 |
+
|
| 259 |
+
if st.checkbox("Histogram"):
|
| 260 |
+
st.plotly_chart(histogram_tool(csv_path, st.selectbox("Var", num_cols, key="hist")),
|
| 261 |
+
use_container_width=True)
|
| 262 |
+
|
| 263 |
+
if st.checkbox("Scatterย Matrix"):
|
| 264 |
+
sel = st.multiselect("Columns", num_cols, default=num_cols[:3])
|
| 265 |
+
if sel:
|
| 266 |
+
st.plotly_chart(scatter_matrix_tool(csv_path, sel), use_container_width=True)
|
| 267 |
+
|
| 268 |
+
if st.checkbox("Correlationย Heatโmap"):
|
| 269 |
+
st.plotly_chart(corr_heatmap_tool(csv_path), use_container_width=True)
|