File size: 35,860 Bytes
62f88b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3c37f6f
 
 
62f88b4
 
 
3c37f6f
90e64d1
 
 
62f88b4
 
3c37f6f
09b00d7
62f88b4
 
 
 
 
 
 
 
3c37f6f
 
 
 
62f88b4
3c37f6f
 
62f88b4
3c37f6f
 
62f88b4
 
 
3c37f6f
 
 
90e64d1
09b00d7
3c37f6f
 
 
 
 
 
 
 
 
 
62f88b4
 
3c37f6f
62f88b4
 
3c37f6f
62f88b4
3c37f6f
 
 
 
 
90e64d1
3c37f6f
 
90e64d1
62f88b4
3c37f6f
62f88b4
 
09b00d7
62f88b4
3c37f6f
 
 
90e64d1
09b00d7
 
 
 
90e64d1
09b00d7
62f88b4
3c37f6f
 
62f88b4
 
 
90e64d1
3c37f6f
394ae41
 
 
 
 
 
90e64d1
 
 
3c37f6f
394ae41
3c37f6f
 
 
394ae41
 
3c37f6f
394ae41
3c37f6f
 
394ae41
 
 
3c37f6f
394ae41
90e64d1
 
 
 
 
 
62f88b4
 
 
 
3c37f6f
 
 
 
 
62f88b4
394ae41
62f88b4
 
3c37f6f
 
90e64d1
3c37f6f
 
394ae41
 
3c37f6f
 
 
90e64d1
62f88b4
90e64d1
3c37f6f
62f88b4
 
394ae41
 
3c37f6f
62f88b4
3c37f6f
62f88b4
394ae41
09b00d7
3c37f6f
 
6c3bf7e
62f88b4
 
394ae41
3c37f6f
 
 
394ae41
3c37f6f
62f88b4
3c37f6f
 
90e64d1
 
3c37f6f
62f88b4
90e64d1
3c37f6f
62f88b4
 
 
3c37f6f
 
 
 
 
 
90e64d1
3c37f6f
 
 
394ae41
3c37f6f
 
 
394ae41
3c37f6f
 
 
 
 
 
 
 
 
 
 
394ae41
 
 
 
3c37f6f
 
 
 
 
 
90e64d1
3c37f6f
394ae41
62f88b4
 
 
 
 
3c37f6f
6c3bf7e
62f88b4
 
 
3c37f6f
 
 
394ae41
 
 
3c37f6f
 
09b00d7
394ae41
09b00d7
 
 
3c37f6f
90e64d1
3c37f6f
 
 
 
394ae41
3c37f6f
394ae41
90e64d1
3c37f6f
62f88b4
3c37f6f
 
394ae41
3c37f6f
62f88b4
3c37f6f
90e64d1
62f88b4
 
 
3c37f6f
90e64d1
394ae41
3c37f6f
 
 
394ae41
 
3c37f6f
 
62f88b4
 
394ae41
62f88b4
 
394ae41
6c3bf7e
 
 
394ae41
6c3bf7e
 
394ae41
 
6c3bf7e
 
394ae41
 
09b00d7
 
3c37f6f
 
394ae41
6c3bf7e
 
394ae41
 
3c37f6f
 
394ae41
 
3c37f6f
62f88b4
90e64d1
394ae41
 
62f88b4
394ae41
 
 
 
 
 
 
 
 
62f88b4
 
3c37f6f
09b00d7
394ae41
3c37f6f
62f88b4
90e64d1
394ae41
62f88b4
 
 
394ae41
3c37f6f
394ae41
 
3c37f6f
90e64d1
 
 
3c37f6f
90e64d1
 
3c37f6f
62f88b4
90e64d1
09b00d7
3c37f6f
62f88b4
 
 
3c37f6f
62f88b4
90e64d1
3c37f6f
 
 
 
 
 
 
 
90e64d1
 
3c37f6f
 
 
 
 
 
 
 
 
90e64d1
3c37f6f
62f88b4
3c37f6f
 
 
 
6c3bf7e
3c37f6f
 
6c3bf7e
3c37f6f
6c3bf7e
 
 
3c37f6f
 
 
 
 
6c3bf7e
3c37f6f
 
 
 
 
 
90e64d1
3c37f6f
 
 
6c3bf7e
3c37f6f
90e64d1
394ae41
 
09b00d7
62f88b4
 
3c37f6f
 
 
 
 
 
90e64d1
394ae41
 
62f88b4
394ae41
 
3c37f6f
 
 
394ae41
3c37f6f
 
 
394ae41
3c37f6f
394ae41
 
 
3c37f6f
90e64d1
394ae41
 
3c37f6f
 
 
 
394ae41
 
 
 
 
3c37f6f
394ae41
 
 
3c37f6f
 
 
394ae41
 
90e64d1
3c37f6f
394ae41
 
09b00d7
3c37f6f
09b00d7
 
6c3bf7e
394ae41
 
3c37f6f
 
394ae41
 
 
 
09b00d7
 
90e64d1
 
 
394ae41
3c37f6f
 
 
09b00d7
394ae41
3c37f6f
 
 
 
6c3bf7e
62f88b4
 
90e64d1
62f88b4
3c37f6f
 
62f88b4
3c37f6f
394ae41
 
3c37f6f
394ae41
09b00d7
3c37f6f
6c3bf7e
09b00d7
 
90e64d1
3c37f6f
 
09b00d7
3c37f6f
90e64d1
3c37f6f
394ae41
 
 
6c3bf7e
09b00d7
394ae41
 
3c37f6f
394ae41
3c37f6f
 
 
394ae41
 
 
 
62f88b4
3c37f6f
 
62f88b4
394ae41
62f88b4
09b00d7
 
3c37f6f
6c3bf7e
62f88b4
3c37f6f
394ae41
3c37f6f
394ae41
3c37f6f
394ae41
3c37f6f
394ae41
 
3c37f6f
90e64d1
394ae41
 
 
62f88b4
90e64d1
394ae41
3c37f6f
 
 
09b00d7
 
394ae41
3c37f6f
 
394ae41
62f88b4
 
394ae41
3c37f6f
62f88b4
394ae41
 
62f88b4
394ae41
 
62f88b4
 
394ae41
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
# Copyright 2025 Google LLC. Based on work by Yousif Ahmed.
# Concept: ChronoWeave - Branching Narrative Generation
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0

import streamlit as st
import google.generativeai as genai
import os
import json
import numpy as np
from io import BytesIO
import time
import wave
import contextlib
import asyncio
import uuid # For unique identifiers
import shutil # For directory operations
import logging # For better logging

# Image handling
from PIL import Image
# Pydantic for data validation
# Updated imports for Pydantic v2 syntax
from pydantic import BaseModel, Field, ValidationError, field_validator, model_validator
from typing import List, Optional, Literal, Dict, Any

# Video and audio processing
from moviepy.editor import ImageClip, AudioFileClip, concatenate_videoclips
# from moviepy.config import change_settings # Potential for setting imagemagick path if needed

# Type hints
import typing_extensions as typing

# Async support for Streamlit/Google API
import nest_asyncio
nest_asyncio.apply() # Apply patch for asyncio in environments like Streamlit/Jupyter

# --- Logging Setup ---
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)

# --- Configuration ---
st.set_page_config(page_title="ChronoWeave", layout="wide", initial_sidebar_state="expanded")
st.title("πŸŒ€ ChronoWeave: Advanced Branching Narrative Generator")
st.markdown("""
Generate multiple, branching story timelines from a single theme using AI, complete with images and narration.
*Based on the work of Yousif Ahmed. Copyright 2025 Google LLC.*
""")

# --- Constants ---
# Text/JSON Model
TEXT_MODEL_ID = "models/gemini-1.5-flash" # Or "gemini-1.5-pro" for potentially higher quality/cost
# Audio Model Config
AUDIO_API_VERSION = 'v1alpha' # May not be strictly needed for endpoint if library handles it
AUDIO_MODEL_ID = f"models/gemini-1.5-flash" # Model used for audio tasks
AUDIO_SAMPLING_RATE = 24000 # Standard for TTS models like Google's
# Image Model Config
IMAGE_MODEL_ID = "imagen-3" # Or specific version like "imagen-3.0-generate-002"
DEFAULT_ASPECT_RATIO = "1:1"
# Video Config
VIDEO_FPS = 24
VIDEO_CODEC = "libx264" # Widely compatible H.264
AUDIO_CODEC = "aac" # Common audio codec for MP4
# File Management
TEMP_DIR_BASE = ".chrono_temp" # Base name for temporary directories

# --- API Key Handling ---
GOOGLE_API_KEY = None
try:
    GOOGLE_API_KEY = st.secrets["GOOGLE_API_KEY"]
    logger.info("Google API Key loaded from Streamlit secrets.")
except KeyError:
    GOOGLE_API_KEY = os.environ.get('GOOGLE_API_KEY')
    if GOOGLE_API_KEY:
        logger.info("Google API Key loaded from environment variable.")
    else:
        st.error(
            "🚨 **Google API Key Not Found!** Please configure it via Streamlit secrets or environment variable.",
            icon="🚨"
        )
        st.stop()

# --- Initialize Google Clients ---
try:
    genai.configure(api_key=GOOGLE_API_KEY)
    logger.info("Configured google-generativeai with API key.")

    client_standard = genai.GenerativeModel(TEXT_MODEL_ID)
    logger.info(f"Initialized standard GenerativeModel for {TEXT_MODEL_ID}.")

    live_model = genai.GenerativeModel(AUDIO_MODEL_ID)
    logger.info(f"Initialized GenerativeModel handle for audio ({AUDIO_MODEL_ID}).")

except AttributeError as ae:
     logger.exception("AttributeError during Google AI Client Initialization.")
     st.error(f"🚨 Initialization Error: {ae}. Ensure 'google-generativeai' is up-to-date.", icon="🚨")
     st.stop()
except Exception as e:
    logger.exception("Failed to initialize Google AI Clients.")
    st.error(f"🚨 Failed to initialize Google AI Clients: {e}", icon="🚨")
    st.stop()


# --- Define Pydantic Schemas (Using V2 Syntax) ---
class StorySegment(BaseModel):
    scene_id: int = Field(..., ge=0)
    image_prompt: str = Field(..., min_length=10, max_length=250) # Keep increased limits
    audio_text: str = Field(..., min_length=5, max_length=150)
    character_description: str = Field(..., max_length=250) # Keep increased limits
    timeline_visual_modifier: Optional[str] = Field(None, max_length=50)

    @field_validator('image_prompt')
    @classmethod
    def image_prompt_no_humans(cls, v: str) -> str:
        if any(word in v.lower() for word in ["person", "people", "human", "man", "woman", "boy", "girl", "child"]):
            logger.warning(f"Image prompt '{v[:50]}...' may contain human descriptions.")
        return v

class Timeline(BaseModel):
    timeline_id: int = Field(..., ge=0)
    # Keep min_length=5 for divergence_reason, rely on improved prompt
    divergence_reason: str = Field(..., min_length=5, description="Clear reason why this timeline branched off.")
    segments: List[StorySegment] = Field(..., min_items=1)

class ChronoWeaveResponse(BaseModel):
    core_theme: str = Field(..., min_length=5)
    timelines: List[Timeline] = Field(..., min_items=1)
    total_scenes_per_timeline: int = Field(..., gt=0)

    @model_validator(mode='after')
    def check_timeline_segment_count(self) -> 'ChronoWeaveResponse':
        expected_scenes = self.total_scenes_per_timeline
        for i, timeline in enumerate(self.timelines):
            if len(timeline.segments) != expected_scenes:
                raise ValueError(f"Timeline {i} (ID: {timeline.timeline_id}) has {len(timeline.segments)} segments, but expected {expected_scenes}.")
        return self

# --- Helper Functions ---

@contextlib.contextmanager
def wave_file_writer(filename: str, channels: int = 1, rate: int = AUDIO_SAMPLING_RATE, sample_width: int = 2):
    """Context manager to safely write WAV files."""
    wf = None
    try:
        wf = wave.open(filename, "wb")
        wf.setnchannels(channels)
        wf.setsampwidth(sample_width)
        wf.setframerate(rate)
        yield wf
    except Exception as e:
        logger.error(f"Error opening/configuring wave file {filename}: {e}")
        raise
    finally:
        if wf:
            try: wf.close()
            except Exception as e_close: logger.error(f"Error closing wave file {filename}: {e_close}")


async def generate_audio_live_async(api_text: str, output_filename: str, voice: Optional[str] = None) -> Optional[str]:
    """Generates audio using Gemini Live API (async version) via the GenerativeModel."""
    collected_audio = bytearray()
    task_id = os.path.basename(output_filename).split('.')[0]
    logger.info(f"πŸŽ™οΈ [{task_id}] Requesting audio for: '{api_text[:60]}...'")

    try:
        config = {"response_modalities": ["AUDIO"], "audio_config": {"audio_encoding": "LINEAR16", "sample_rate_hertz": AUDIO_SAMPLING_RATE}}
        directive_prompt = f"Narrate the following sentence directly and engagingly. Do not add any introductory or concluding remarks. Speak only the sentence itself:\n\n\"{api_text}\""

        async with live_model.connect(config=config) as session:
            await session.send_request([directive_prompt])
            async for response in session.stream_content():
                if response.audio_chunk and response.audio_chunk.data: collected_audio.extend(response.audio_chunk.data)
                if hasattr(response, 'error') and response.error:
                     logger.error(f"   ❌ [{task_id}] Error during audio stream: {response.error}")
                     st.error(f"Audio stream error for scene {task_id}: {response.error}", icon="πŸ”Š")
                     return None

        if not collected_audio:
            logger.warning(f"⚠️ [{task_id}] No audio data received.")
            st.warning(f"No audio data generated for scene {task_id}.", icon="πŸ”Š")
            return None

        with wave_file_writer(output_filename, rate=AUDIO_SAMPLING_RATE) as wf: wf.writeframes(bytes(collected_audio))
        logger.info(f"   βœ… [{task_id}] Audio saved: {os.path.basename(output_filename)} ({len(collected_audio)} bytes)")
        return output_filename

    except genai.types.generation_types.BlockedPromptException as bpe:
         logger.error(f"   ❌ [{task_id}] Audio generation blocked: {bpe}")
         st.error(f"Audio generation blocked for scene {task_id}.", icon="πŸ”‡")
         return None
    except Exception as e:
        logger.exception(f"   ❌ [{task_id}] Audio generation failed unexpectedly: {e}")
        st.error(f"Audio generation failed for scene {task_id}: {e}", icon="πŸ”Š")
        return None


def generate_story_sequence_chrono(
    theme: str,
    num_scenes: int,
    num_timelines: int,
    divergence_prompt: str = ""
) -> Optional[ChronoWeaveResponse]:
    """Generates branching story sequences using Gemini structured output and validates with Pydantic."""
    st.info(f"πŸ“š Generating {num_timelines} timeline(s) x {num_scenes} scenes for theme: '{theme}'...")
    logger.info(f"Requesting story structure: Theme='{theme}', Timelines={num_timelines}, Scenes={num_scenes}")

    # Updated divergence instruction to guide the first timeline's reason
    divergence_instruction = (
        f"Introduce clear points of divergence between timelines, starting potentially after the first scene. "
        f"If provided, use this hint for divergence: '{divergence_prompt}'. "
        f"Clearly state the divergence reason for each timeline. **For the first timeline (timeline_id 0), use a descriptive reason like 'Initial path' or 'Baseline scenario' that is at least 5 characters long.**"
    )

    prompt = f"""
    Act as an expert narrative designer specializing in short, visual, branching stories for children.
    Create a story based on the core theme: "{theme}".

    **Instructions:**
    1.  Generate exactly **{num_timelines}** distinct timelines.
    2.  Each timeline must contain exactly **{num_scenes}** sequential scenes.
    3.  **Crucially, DO NOT include any humans, people, or humanoid figures** in the descriptions or actions. Focus strictly on animals, fantasy creatures, animated objects, or natural elements.
    4.  {divergence_instruction}
    5.  Maintain a consistent visual style: **'Simple, friendly kids animation style with bright colors and rounded shapes'**, unless a `timeline_visual_modifier` subtly alters it.
    6.  `audio_text` should be a single, concise sentence (max 30 words).
    7.  `image_prompt` should be descriptive **and concise (target 15-35 words MAXIMUM)**, focusing only on the non-human character(s), setting, action, and essential visual style elements for *this specific scene*. **Do NOT repeat the general style description** unless essential.
    8.  `character_description` should **very briefly** describe recurring non-human characters mentioned *in the scene's image prompt* (name, key features). **Keep descriptions extremely concise (target under 20 words total per scene).**

    **Output Format:**
    Respond ONLY with a valid JSON object adhering strictly to the provided schema. Do not include any text before or after the JSON object.

    **JSON Schema:**
    ```json
    {json.dumps(ChronoWeaveResponse.model_json_schema(), indent=2)}
    ```
    """

    try:
        response = client_standard.generate_content(
            contents=prompt,
            generation_config=genai.types.GenerationConfig(
                response_mime_type="application/json",
                temperature=0.7
            )
        )

        try:
            raw_data = json.loads(response.text)
        except json.JSONDecodeError as json_err:
            logger.error(f"Failed to decode JSON: {json_err}")
            logger.error(f"Response Text:\n{response.text}")
            st.error(f"🚨 Failed to parse story structure: {json_err}", icon="πŸ“„")
            st.text_area("Problematic AI Response:", response.text, height=200)
            return None
        except Exception as e:
             logger.error(f"Error processing response text: {e}")
             st.error(f"🚨 Error processing AI response: {e}", icon="πŸ“„")
             return None

        try:
            validated_data = ChronoWeaveResponse.model_validate(raw_data)
            logger.info("βœ… Story structure generated and validated successfully!")
            st.success("βœ… Story structure generated and validated!")
            return validated_data
        except ValidationError as val_err:
            logger.error(f"JSON validation failed: {val_err}")
            logger.error(f"Received Data:\n{json.dumps(raw_data, indent=2)}")
            st.error(f"🚨 Generated story structure invalid: {val_err}", icon="🧬")
            st.json(raw_data)
            return None

    except genai.types.generation_types.BlockedPromptException as bpe:
         logger.error(f"Story generation prompt blocked: {bpe}")
         st.error("🚨 Story generation prompt blocked (safety filters).", icon="🚫")
         return None
    except Exception as e:
        logger.exception("Error during story sequence generation:")
        st.error(f"🚨 Unexpected error during story generation: {e}", icon="πŸ’₯")
        return None


def generate_image_imagen(prompt: str, aspect_ratio: str = "1:1", task_id: str = "IMG") -> Optional[Image.Image]:
    """Generates an image using Imagen via the standard client."""
    logger.info(f"πŸ–ΌοΈ [{task_id}] Requesting image: '{prompt[:70]}...' (Aspect: {aspect_ratio})")

    full_prompt = (
        f"Generate an image in a child-friendly, simple animation style with bright colors and rounded shapes. "
        f"Ensure absolutely NO humans or human-like figures. Focus on animals or objects. "
        f"Aspect ratio {aspect_ratio}. Scene: {prompt}"
    )

    try:
        response = client_standard.generate_content(
            full_prompt, generation_config=genai.types.GenerationConfig(candidate_count=1)
        )

        image_bytes, safety_ratings, block_reason, finish_reason = None, [], None, None

        if hasattr(response, 'candidates') and response.candidates:
            candidate = response.candidates[0]
            if hasattr(candidate, 'finish_reason'): finish_reason = getattr(candidate.finish_reason, 'name', str(candidate.finish_reason))
            if hasattr(candidate, 'content') and candidate.content and hasattr(candidate.content, 'parts') and candidate.content.parts:
                part = candidate.content.parts[0]
                if hasattr(part, 'inline_data') and part.inline_data and hasattr(part.inline_data, 'data'): image_bytes = part.inline_data.data
            if hasattr(candidate, 'safety_ratings'): safety_ratings = candidate.safety_ratings

        if hasattr(response, 'prompt_feedback') and response.prompt_feedback:
            if hasattr(response.prompt_feedback, 'block_reason') and response.prompt_feedback.block_reason.name != 'BLOCK_REASON_UNSPECIFIED': block_reason = response.prompt_feedback.block_reason.name
            if hasattr(response.prompt_feedback, 'safety_ratings'): safety_ratings.extend(response.prompt_feedback.safety_ratings)

        if image_bytes:
            try:
                image = Image.open(BytesIO(image_bytes))
                logger.info(f"   βœ… [{task_id}] Image generated.")
                filtered_ratings = [f"{r.category.name}: {r.probability.name}" for r in safety_ratings if hasattr(r,'probability') and r.probability.name != 'NEGLIGIBLE']
                if filtered_ratings:
                    logger.warning(f"   ⚠️ [{task_id}] Image flagged: {', '.join(filtered_ratings)}.")
                    st.warning(f"Image {task_id} flagged: {', '.join(filtered_ratings)}", icon="⚠️")
                return image
            except Exception as img_err:
                logger.error(f"   ❌ [{task_id}] Failed to decode image data: {img_err}")
                st.warning(f"Failed decode image data {task_id}.", icon="πŸ–ΌοΈ")
                return None
        else:
            fail_reason = "Unknown reason."
            if block_reason: fail_reason = f"Blocked (Reason: {block_reason})."
            elif finish_reason and finish_reason not in ['STOP', 'FINISH_REASON_UNSPECIFIED']: fail_reason = f"Finished early (Reason: {finish_reason})."
            else:
                filtered_ratings = [f"{r.category.name}: {r.probability.name}" for r in safety_ratings if hasattr(r,'probability') and r.probability.name != 'NEGLIGIBLE']
                if filtered_ratings: fail_reason = f"Safety filters triggered: {', '.join(filtered_ratings)}."

            # Add the full response logging here for persistent unknown failures
            if fail_reason == "Unknown reason.":
                 logger.warning(f"   ⚠️ [{task_id}] Full API response object: {response}")

            logger.warning(f"   ⚠️ [{task_id}] No image data. Reason: {fail_reason} Prompt: '{prompt[:70]}...'")
            st.warning(f"No image data for {task_id}. Reason: {fail_reason}", icon="πŸ–ΌοΈ")
            return None

    except genai.types.generation_types.BlockedPromptException as bpe:
         logger.error(f"   ❌ [{task_id}] Image generation blocked (exception): {bpe}")
         st.error(f"Image generation blocked for {task_id} (exception).", icon="🚫")
         return None
    except Exception as e:
        logger.exception(f"   ❌ [{task_id}] Image generation failed unexpectedly: {e}")
        st.error(f"Image generation failed for {task_id}: {e}", icon="πŸ–ΌοΈ")
        return None

# --- Streamlit UI Elements ---
# (Identical to previous version - No changes needed here)
st.sidebar.header("βš™οΈ Configuration")
if GOOGLE_API_KEY: st.sidebar.success("Google API Key Loaded", icon="βœ…")
else: st.sidebar.error("Google API Key Missing!", icon="🚨")
theme = st.sidebar.text_input("πŸ“– Story Theme:", "A curious squirrel finds a mysterious, glowing acorn")
num_scenes = st.sidebar.slider("🎬 Scenes per Timeline:", min_value=2, max_value=7, value=3)
num_timelines = st.sidebar.slider("🌿 Number of Timelines:", min_value=1, max_value=4, value=2)
divergence_prompt = st.sidebar.text_input("↔️ Divergence Hint (Optional):", placeholder="e.g., What if a bird tried to steal it?")
st.sidebar.subheader("🎨 Visual & Audio Settings")
aspect_ratio = st.sidebar.selectbox("πŸ–ΌοΈ Image Aspect Ratio:", ["1:1", "16:9", "9:16"], index=0)
audio_voice = None
generate_button = st.sidebar.button("✨ Generate ChronoWeave ✨", type="primary", disabled=(not GOOGLE_API_KEY), use_container_width=True)
st.sidebar.markdown("---")
st.sidebar.info("⏳ Generation can take several minutes.", icon="⏳")
st.sidebar.markdown(f"<small>Models: Text={TEXT_MODEL_ID}, Image={IMAGE_MODEL_ID}, Audio={AUDIO_MODEL_ID}</small>", unsafe_allow_html=True)

# --- Main Logic ---
if generate_button:
    if not theme:
        st.error("Please enter a story theme in the sidebar.", icon="πŸ‘ˆ")
    else:
        run_id = str(uuid.uuid4()).split('-')[0]
        temp_dir = os.path.join(TEMP_DIR_BASE, f"run_{run_id}")
        try:
            os.makedirs(temp_dir, exist_ok=True)
            logger.info(f"Created temporary directory: {temp_dir}")
        except OSError as e:
            st.error(f"🚨 Failed to create temporary directory {temp_dir}: {e}", icon="πŸ“‚")
            st.stop()

        final_video_paths = {}
        generation_errors = {}

        # --- 1. Generate Narrative Structure ---
        chrono_response: Optional[ChronoWeaveResponse] = None
        with st.spinner("Generating narrative structure... πŸ€”"):
            chrono_response = generate_story_sequence_chrono(theme, num_scenes, num_timelines, divergence_prompt)

        if chrono_response:
            # --- 2. Process Each Timeline ---
            overall_start_time = time.time()
            all_timelines_successful = True

            with st.status("Generating assets and composing videos...", expanded=True) as status:
                for timeline_index, timeline in enumerate(chrono_response.timelines):
                    timeline_id = timeline.timeline_id
                    divergence = timeline.divergence_reason
                    segments = timeline.segments
                    timeline_label = f"Timeline {timeline_id}"
                    st.subheader(f"Processing {timeline_label}: {divergence}")
                    logger.info(f"--- Processing {timeline_label} (Index: {timeline_index}) ---")
                    generation_errors[timeline_id] = []

                    temp_image_files = {}
                    temp_audio_files = {}
                    video_clips = []
                    timeline_start_time = time.time()
                    scene_success_count = 0

                    for scene_index, segment in enumerate(segments):
                        scene_id = segment.scene_id
                        task_id = f"T{timeline_id}_S{scene_id}"
                        status_message = f"Processing {timeline_label}, Scene {scene_id + 1}/{len(segments)}..."
                        status.update(label=status_message)
                        st.markdown(f"--- **Scene {scene_id + 1} ({task_id})** ---")
                        logger.info(status_message)
                        scene_has_error = False

                        st.write(f"   *Image Prompt:* {segment.image_prompt}" + (f" *(Mod: {segment.timeline_visual_modifier})*" if segment.timeline_visual_modifier else ""))
                        st.write(f"   *Audio Text:* {segment.audio_text}")

                        # --- 2a. Image Generation ---
                        generated_image: Optional[Image.Image] = None
                        with st.spinner(f"[{task_id}] Generating image... 🎨"):
                            combined_prompt = segment.image_prompt
                            if segment.character_description: combined_prompt += f" Featuring: {segment.character_description}"
                            if segment.timeline_visual_modifier: combined_prompt += f" Style hint: {segment.timeline_visual_modifier}."
                            generated_image = generate_image_imagen(combined_prompt, aspect_ratio, task_id)

                        if generated_image:
                            image_path = os.path.join(temp_dir, f"{task_id}_image.png")
                            try:
                                generated_image.save(image_path)
                                temp_image_files[scene_id] = image_path
                                st.image(generated_image, width=180, caption=f"Scene {scene_id+1} Image")
                            except Exception as e:
                                logger.error(f"   ❌ [{task_id}] Failed to save image: {e}")
                                st.error(f"Failed save image {task_id}.", icon="πŸ’Ύ")
                                scene_has_error = True; generation_errors[timeline_id].append(f"S{scene_id+1}: Img save fail.")
                        else:
                            scene_has_error = True; generation_errors[timeline_id].append(f"S{scene_id+1}: Img gen fail.")
                            continue # Skip rest of scene processing

                        # --- 2b. Audio Generation ---
                        generated_audio_path: Optional[str] = None
                        if not scene_has_error: # Only proceed if image succeeded
                            with st.spinner(f"[{task_id}] Generating audio... πŸ”Š"):
                                audio_path_temp = os.path.join(temp_dir, f"{task_id}_audio.wav")
                                try:
                                    generated_audio_path = asyncio.run(generate_audio_live_async(segment.audio_text, audio_path_temp, audio_voice))
                                except RuntimeError as e:
                                    logger.error(f"   ❌ [{task_id}] Asyncio error: {e}")
                                    st.error(f"Asyncio audio error {task_id}: {e}", icon="⚑")
                                    scene_has_error = True; generation_errors[timeline_id].append(f"S{scene_id+1}: Audio async err.")
                                except Exception as e:
                                    logger.exception(f"   ❌ [{task_id}] Unexpected audio error: {e}")
                                    st.error(f"Unexpected audio error {task_id}: {e}", icon="πŸ’₯")
                                    scene_has_error = True; generation_errors[timeline_id].append(f"S{scene_id+1}: Audio gen err.")

                            if generated_audio_path:
                                temp_audio_files[scene_id] = generated_audio_path
                                try:
                                    with open(generated_audio_path, 'rb') as ap: st.audio(ap.read(), format='audio/wav')
                                except Exception as e: logger.warning(f"   ⚠️ [{task_id}] Audio preview error: {e}")
                            else: # Audio generation failed
                                scene_has_error = True; generation_errors[timeline_id].append(f"S{scene_id+1}: Audio gen fail.")
                                # Clean up corresponding image file
                                if scene_id in temp_image_files and os.path.exists(temp_image_files[scene_id]):
                                    try: os.remove(temp_image_files[scene_id]); logger.info(f"   πŸ—‘οΈ [{task_id}] Removed image due to audio fail."); del temp_image_files[scene_id]
                                    except OSError as e: logger.warning(f"   ⚠️ [{task_id}] Failed remove image after audio fail: {e}")
                                continue # Skip video clip creation

                        # --- 2c. Create Video Clip ---
                        if not scene_has_error and scene_id in temp_image_files and scene_id in temp_audio_files:
                            st.write(f"   🎬 Creating video clip S{scene_id+1}...")
                            img_path, aud_path = temp_image_files[scene_id], temp_audio_files[scene_id]
                            audio_clip_instance, image_clip_instance, composite_clip = None, None, None
                            try:
                                if not os.path.exists(img_path): raise FileNotFoundError(f"Img missing: {img_path}")
                                if not os.path.exists(aud_path): raise FileNotFoundError(f"Aud missing: {aud_path}")
                                audio_clip_instance = AudioFileClip(aud_path)
                                np_image = np.array(Image.open(img_path))
                                image_clip_instance = ImageClip(np_image).set_duration(audio_clip_instance.duration)
                                composite_clip = image_clip_instance.set_audio(audio_clip_instance)
                                video_clips.append(composite_clip)
                                logger.info(f"      βœ… [{task_id}] Clip created (Dur: {audio_clip_instance.duration:.2f}s).")
                                st.write(f"      βœ… Clip created (Dur: {audio_clip_instance.duration:.2f}s).")
                                scene_success_count += 1
                            except Exception as e:
                                logger.exception(f"      ❌ [{task_id}] Failed clip creation: {e}")
                                st.error(f"Failed create clip {task_id}: {e}", icon="🎬")
                                scene_has_error = True; generation_errors[timeline_id].append(f"S{scene_id+1}: Clip creation fail.")
                                # Cleanup resources from failed clip attempt
                                if audio_clip_instance: audio_clip_instance.close()
                                if image_clip_instance: image_clip_instance.close()
                                try:
                                     if os.path.exists(img_path): os.remove(img_path)
                                     if os.path.exists(aud_path): os.remove(aud_path)
                                except OSError as e_rem: logger.warning(f"   ⚠️ [{task_id}] Failed remove files after clip error: {e_rem}")

                    # --- 2d. Assemble Timeline Video ---
                    timeline_duration = time.time() - timeline_start_time
                    if video_clips and scene_success_count == len(segments):
                        # ... (Video assembly logic - same as before) ...
                        status.update(label=f"Composing final video for {timeline_label}...")
                        st.write(f"🎞️ Assembling final video for {timeline_label}...")
                        logger.info(f"🎞️ Assembling final video for {timeline_label} ({len(video_clips)} clips)...")
                        output_filename = os.path.join(temp_dir, f"timeline_{timeline_id}_final.mp4")
                        final_timeline_video = None
                        try:
                            final_timeline_video = concatenate_videoclips(video_clips, method="compose")
                            final_timeline_video.write_videofile(output_filename, fps=VIDEO_FPS, codec=VIDEO_CODEC, audio_codec=AUDIO_CODEC, logger=None)
                            final_video_paths[timeline_id] = output_filename
                            logger.info(f"   βœ… [{timeline_label}] Final video saved: {os.path.basename(output_filename)}")
                            st.success(f"βœ… Video for {timeline_label} completed in {timeline_duration:.2f}s.")
                        except Exception as e:
                            logger.exception(f"   ❌ [{timeline_label}] Failed to write final video: {e}")
                            st.error(f"Failed assemble video {timeline_label}: {e}", icon="πŸ“Ό")
                            all_timelines_successful = False; generation_errors[timeline_id].append(f"Timeline {timeline_id}: Video assembly failed.")
                        finally:
                            logger.debug(f"[{timeline_label}] Closing clips...")
                            for i, clip in enumerate(video_clips):
                                try:
                                    if clip:
                                      if clip.audio: clip.audio.close()
                                      clip.close()
                                except Exception as e_close: logger.warning(f"   ⚠️ [{timeline_label}] Error closing source clip {i}: {e_close}")
                            if final_timeline_video:
                                try:
                                     if final_timeline_video.audio: final_timeline_video.audio.close()
                                     final_timeline_video.close()
                                except Exception as e_close_final: logger.warning(f"   ⚠️ [{timeline_label}] Error closing final video object: {e_close_final}")
                    elif not video_clips:
                         logger.warning(f"[{timeline_label}] No clips generated. Skipping assembly.")
                         st.warning(f"No scenes processed for {timeline_label}. Cannot create video.", icon="🚫")
                         all_timelines_successful = False
                    else: # Some scenes failed
                        error_count = len(segments) - scene_success_count
                        logger.warning(f"[{timeline_label}] Errors in {error_count} scene(s). Skipping assembly.")
                        st.warning(f"{timeline_label} had errors in {error_count} scene(s). Video not assembled.", icon="⚠️")
                        all_timelines_successful = False
                    if generation_errors[timeline_id]: logger.error(f"Error summary {timeline_label}: {generation_errors[timeline_id]}")

                # --- End of Timelines Loop ---
                overall_duration = time.time() - overall_start_time
                # ... (Final status update logic - same as before) ...
                if all_timelines_successful and final_video_paths: status_msg = f"ChronoWeave Complete! ({len(final_video_paths)} videos in {overall_duration:.2f}s)"; status.update(label=status_msg, state="complete", expanded=False); logger.info(status_msg)
                elif final_video_paths: status_msg = f"ChronoWeave Partially Complete ({len(final_video_paths)} videos, errors). Time: {overall_duration:.2f}s"; status.update(label=status_msg, state="warning", expanded=True); logger.warning(status_msg)
                else: status_msg = f"ChronoWeave Failed. No videos. Time: {overall_duration:.2f}s"; status.update(label=status_msg, state="error", expanded=True); logger.error(status_msg)

            # --- 3. Display Results ---
            st.header("🎬 Generated Timelines")
            if final_video_paths:
                # ... (Display logic - same as before) ...
                sorted_timeline_ids = sorted(final_video_paths.keys())
                num_cols = min(len(sorted_timeline_ids), 3)
                cols = st.columns(num_cols)
                for idx, timeline_id in enumerate(sorted_timeline_ids):
                    col = cols[idx % num_cols]
                    video_path = final_video_paths[timeline_id]
                    timeline_data = next((t for t in chrono_response.timelines if t.timeline_id == timeline_id), None)
                    reason = timeline_data.divergence_reason if timeline_data else "Unknown"
                    with col:
                        st.subheader(f"Timeline {timeline_id}"); st.caption(f"Divergence: {reason}")
                        try:
                            with open(video_path, 'rb') as vf: video_bytes = vf.read()
                            st.video(video_bytes)
                            logger.info(f"Displaying video T{timeline_id}")
                            st.download_button(f"Download T{timeline_id}", video_bytes, f"timeline_{timeline_id}.mp4", "video/mp4", key=f"dl_{timeline_id}")
                            if generation_errors.get(timeline_id):
                                with st.expander(f"⚠️ View {len(generation_errors[timeline_id])} Issues"):
                                     for err in generation_errors[timeline_id]: st.warning(f"- {err}")
                        except FileNotFoundError: logger.error(f"Video file missing: {video_path}"); st.error(f"Error: Video file missing T{timeline_id}.", icon="🚨")
                        except Exception as e: logger.exception(f"Display error {video_path}: {e}"); st.error(f"Error display T{timeline_id}: {e}", icon="🚨")
            else:
                st.warning("No final videos were successfully generated.")
                # ... (Error summary display - same as before) ...
                all_errors = [msg for err_list in generation_errors.values() for msg in err_list]
                if all_errors:
                    st.subheader("Summary of Generation Issues")
                    with st.expander("View All Errors", expanded=True):
                        for tid, errors in generation_errors.items():
                            if errors: st.error(f"T{tid}:"); [st.error(f"  - {msg}") for msg in errors]

            # --- 4. Cleanup ---
            st.info(f"Attempting cleanup: {temp_dir}")
            try:
                shutil.rmtree(temp_dir)
                logger.info(f"βœ… Temp dir removed: {temp_dir}")
                st.success("βœ… Temporary files cleaned up.")
            except Exception as e:
                logger.error(f"⚠️ Failed remove temp dir {temp_dir}: {e}")
                st.warning(f"Could not remove temp files: {temp_dir}.", icon="⚠️")

        elif not chrono_response: logger.error("Story generation/validation failed.")
        else: st.error("Unexpected issue post-generation.", icon="πŸ›‘"); logger.error("Chrono_response truthy but invalid state.")

else:
    st.info("Configure settings and click '✨ Generate ChronoWeave ✨' to start.")