mgbam commited on
Commit
aa80548
·
verified ·
1 Parent(s): 0384c3e

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +454 -288
app.py CHANGED
@@ -1,345 +1,511 @@
1
- # Copyright 2025 Google LLC. Based on work by Yousif Ahmed.
2
- # Concept: ChronoWeave - Branching Narrative Generation
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
 
6
 
7
- import streamlit as st
8
- import google.generativeai as genai
9
  import os
10
  import json
11
- import numpy as np
12
- from io import BytesIO
13
  import time
14
- import wave
15
- import contextlib
16
  import asyncio
17
- import uuid # For unique identifiers
18
- import shutil # For directory operations
19
- import logging # For better logging
 
 
 
20
 
21
- # Image handling
 
22
  from PIL import Image
 
23
  # Pydantic for data validation
24
  from pydantic import BaseModel, Field, ValidationError, field_validator, model_validator
25
- from typing import List, Optional, Literal, Dict, Any
26
 
27
  # Video and audio processing
28
  from moviepy.editor import ImageClip, AudioFileClip, concatenate_videoclips
29
- # from moviepy.config import change_settings # Potential for setting imagemagick path if needed
30
 
31
- # Type hints
32
- import typing_extensions as typing
33
-
34
- # Async support for Streamlit/Google API
35
  import nest_asyncio
36
- nest_asyncio.apply() # Apply patch for asyncio in environments like Streamlit/Jupyter
37
 
38
  # --- Logging Setup ---
39
- logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
40
  logger = logging.getLogger(__name__)
41
 
42
- # --- Configuration ---
43
- st.set_page_config(page_title="ChronoWeave", layout="wide", initial_sidebar_state="expanded")
44
- st.title("🌀 ChronoWeave: Advanced Branching Narrative Generator")
45
- st.markdown("""
46
- Generate multiple, branching story timelines from a single theme using AI, complete with images and narration.
47
- *Based on the work by Yousif Ahmed. Copyright 2025 Google LLC.*
48
- """)
49
-
50
- # --- Constants ---
51
- # Text/JSON Model
52
- TEXT_MODEL_ID = "models/gemini-1.5-flash" # Or "gemini-1.5-pro"
53
- # Audio Model Config
54
- AUDIO_MODEL_ID = "models/gemini-1.5-flash" # Model used for audio tasks
55
  AUDIO_SAMPLING_RATE = 24000
56
- # Image Model Config
57
- IMAGE_MODEL_ID = "imagen-3" # <<< NOTE: Likely needs Vertex AI SDK access
58
  DEFAULT_ASPECT_RATIO = "1:1"
59
- # Video Config
60
  VIDEO_FPS = 24
61
  VIDEO_CODEC = "libx264"
62
  AUDIO_CODEC = "aac"
63
- # File Management
64
  TEMP_DIR_BASE = ".chrono_temp"
65
 
66
- # --- API Key Handling ---
67
- GOOGLE_API_KEY = None
68
- try:
69
- GOOGLE_API_KEY = st.secrets["GOOGLE_API_KEY"]
70
- logger.info("Google API Key loaded from Streamlit secrets.")
71
- except KeyError:
72
- GOOGLE_API_KEY = os.environ.get('GOOGLE_API_KEY')
73
- if GOOGLE_API_KEY:
74
- logger.info("Google API Key loaded from environment variable.")
75
- else:
76
- st.error("🚨 **Google API Key Not Found!** Please configure it.", icon="🚨"); st.stop()
77
-
78
- # --- Initialize Google Clients ---
79
- try:
80
- genai.configure(api_key=GOOGLE_API_KEY)
81
- logger.info("Configured google-generativeai with API key.")
82
- client_standard = genai.GenerativeModel(TEXT_MODEL_ID)
83
- logger.info(f"Initialized text/JSON model handle: {TEXT_MODEL_ID}.")
84
- live_model = genai.GenerativeModel(AUDIO_MODEL_ID)
85
- logger.info(f"Initialized audio model handle: {AUDIO_MODEL_ID}.")
86
- image_model_genai = genai.GenerativeModel(IMAGE_MODEL_ID) # Retained but likely needs Vertex SDK
87
- logger.info(f"Initialized google-generativeai handle for image model: {IMAGE_MODEL_ID} (May require Vertex AI SDK).")
88
- # ---> TODO: Initialize Vertex AI client here if switching SDK <---
89
-
90
- except AttributeError as ae:
91
- logger.exception("AttributeError during Client Init."); st.error(f"🚨 Init Error: {ae}. Update library?", icon="🚨"); st.stop()
92
- except Exception as e:
93
- logger.exception("Failed to initialize Google Clients/Models."); st.error(f"🚨 Failed Init: {e}", icon="🚨"); st.stop()
94
-
95
- # --- Define Pydantic Schemas (Using V2 Syntax) ---
96
  class StorySegment(BaseModel):
97
  scene_id: int = Field(..., ge=0)
98
  image_prompt: str = Field(..., min_length=10, max_length=250)
99
  audio_text: str = Field(..., min_length=5, max_length=150)
100
  character_description: str = Field(..., max_length=250)
101
  timeline_visual_modifier: Optional[str] = Field(None, max_length=50)
102
- @field_validator('image_prompt')
 
103
  @classmethod
104
  def image_prompt_no_humans(cls, v: str) -> str:
105
- if any(w in v.lower() for w in ["person", "people", "human", "man", "woman", "boy", "girl", "child"]): logger.warning(f"Prompt '{v[:50]}...' may contain humans.")
 
106
  return v
 
 
107
  class Timeline(BaseModel):
108
  timeline_id: int = Field(..., ge=0)
109
  divergence_reason: str = Field(..., min_length=5)
110
  segments: List[StorySegment] = Field(..., min_items=1)
 
 
111
  class ChronoWeaveResponse(BaseModel):
112
  core_theme: str = Field(..., min_length=5)
113
  timelines: List[Timeline] = Field(..., min_items=1)
114
  total_scenes_per_timeline: int = Field(..., gt=0)
115
- @model_validator(mode='after')
116
- def check_timeline_segment_count(self) -> 'ChronoWeaveResponse':
 
117
  expected = self.total_scenes_per_timeline
118
- for i, t in enumerate(self.timelines):
119
- if len(t.segments) != expected: raise ValueError(f"Timeline {i} ID {t.timeline_id}: Expected {expected} segments, found {len(t.segments)}.")
 
120
  return self
121
 
 
122
  # --- Helper Functions ---
123
  @contextlib.contextmanager
124
  def wave_file_writer(filename: str, channels: int = 1, rate: int = AUDIO_SAMPLING_RATE, sample_width: int = 2):
125
- """Context manager to safely write WAV files."""
 
 
126
  wf = None
127
  try:
128
- wf = wave.open(filename, "wb"); wf.setnchannels(channels); wf.setsampwidth(sample_width); wf.setframerate(rate)
 
 
 
129
  yield wf
130
- except Exception as e: logger.error(f"Error wave file {filename}: {e}"); raise
 
 
131
  finally:
132
- if wf: try: wf.close()
133
- except Exception as e_close: logger.error(f"Error closing wave file {filename}: {e_close}")
134
-
135
-
136
- async def generate_audio_live_async(api_text: str, output_filename: str, voice: Optional[str] = None) -> Optional[str]:
137
- """Generates audio using Gemini Live API (async version) via the GenerativeModel."""
138
- collected_audio = bytearray(); task_id = os.path.basename(output_filename).split('.')[0]
139
- logger.info(f"🎙️ [{task_id}] Requesting audio: '{api_text[:60]}...'")
140
- try:
141
- # CORRECTED config structure for audio generation <<<<<<-------
142
- config = {
143
- "response_modalities": ["AUDIO"],
144
- # Removed 'audio_config' nesting
145
- "audio_encoding": "LINEAR16",
146
- "sample_rate_hertz": AUDIO_SAMPLING_RATE,
147
- # Add other parameters like "voice" here directly if needed
148
- }
149
- directive_prompt = f"Narrate directly: \"{api_text}\""
150
- async with live_model.connect(config=config) as session: # Pass corrected config
151
- await session.send_request([directive_prompt])
152
- async for response in session.stream_content():
153
- if response.audio_chunk and response.audio_chunk.data: collected_audio.extend(response.audio_chunk.data)
154
- if hasattr(response, 'error') and response.error: logger.error(f" ❌ [{task_id}] Audio stream error: {response.error}"); st.error(f"Audio stream error {task_id}: {response.error}", icon="🔊"); return None
155
- if not collected_audio: logger.warning(f"⚠️ [{task_id}] No audio data received."); st.warning(f"No audio data for {task_id}.", icon="🔊"); return None
156
- with wave_file_writer(output_filename, rate=AUDIO_SAMPLING_RATE) as wf: wf.writeframes(bytes(collected_audio))
157
- logger.info(f" ✅ [{task_id}] Audio saved: {os.path.basename(output_filename)} ({len(collected_audio)} bytes)")
158
- return output_filename
159
- except genai.types.generation_types.BlockedPromptException as bpe: logger.error(f" ❌ [{task_id}] Audio blocked: {bpe}"); st.error(f"Audio blocked {task_id}.", icon="🔇"); return None
160
- # Catch TypeError specifically for config issues
161
- except TypeError as te:
162
- logger.exception(f" ❌ [{task_id}] Audio config TypeError: {te}")
163
- st.error(f"Audio configuration error for {task_id} (TypeError): {te}. Check library version/config structure.", icon="⚙️")
164
- return None
165
- except Exception as e: logger.exception(f" ❌ [{task_id}] Audio failed: {e}"); st.error(f"Audio failed {task_id}: {e}", icon="🔊"); return None
166
-
167
-
168
- def generate_story_sequence_chrono(theme: str, num_scenes: int, num_timelines: int, divergence_prompt: str = "") -> Optional[ChronoWeaveResponse]:
169
- """Generates branching story sequences using Gemini structured output and validates with Pydantic."""
170
- st.info(f"📚 Generating {num_timelines} timeline(s) x {num_scenes} scenes for: '{theme}'...")
171
- logger.info(f"Requesting story structure: Theme='{theme}', Timelines={num_timelines}, Scenes={num_scenes}")
172
- divergence_instruction = (f"Introduce clear points of divergence between timelines, after first scene if possible. Hint: '{divergence_prompt}'. State divergence reason clearly. **For timeline_id 0, use 'Initial path' or 'Baseline scenario'.**")
173
- prompt = f"""Act as narrative designer. Create story for theme: "{theme}". Instructions: 1. Exactly **{num_timelines}** timelines. 2. Each timeline exactly **{num_scenes}** scenes. 3. **NO humans/humanoids**. Focus: animals, fantasy creatures, animated objects, nature. 4. {divergence_instruction}. 5. Style: **'Simple, friendly kids animation, bright colors, rounded shapes'**, unless `timeline_visual_modifier` alters. 6. `audio_text`: single concise sentence (max 30 words). 7. `image_prompt`: descriptive, concise (target 15-35 words MAX). Focus on scene elements. **AVOID repeating general style**. 8. `character_description`: VERY brief (name, features). Target < 20 words. Output: ONLY valid JSON object adhering to schema. No text before/after. JSON Schema: ```json\n{json.dumps(ChronoWeaveResponse.model_json_schema(), indent=2)}\n```"""
174
- try:
175
- response = client_standard.generate_content(contents=prompt, generation_config=genai.types.GenerationConfig(response_mime_type="application/json", temperature=0.7))
176
- try: raw_data = json.loads(response.text)
177
- except json.JSONDecodeError as json_err: logger.error(f"Failed JSON decode: {json_err}\nResponse:\n{response.text}"); st.error(f"🚨 Failed parse story: {json_err}", icon="📄"); st.text_area("Problem Response:", response.text, height=150); return None
178
- except Exception as e: logger.error(f"Error processing text: {e}"); st.error(f"🚨 Error processing AI response: {e}", icon="📄"); return None
179
- try: validated_data = ChronoWeaveResponse.model_validate(raw_data); logger.info("✅ Story structure OK!"); st.success("✅ Story structure OK!"); return validated_data
180
- except ValidationError as val_err: logger.error(f"JSON validation failed: {val_err}\nData:\n{json.dumps(raw_data, indent=2)}"); st.error(f"🚨 Gen structure invalid: {val_err}", icon="🧬"); st.json(raw_data); return None
181
- except genai.types.generation_types.BlockedPromptException as bpe: logger.error(f"Story gen blocked: {bpe}"); st.error("🚨 Story prompt blocked.", icon="🚫"); return None
182
- except Exception as e: logger.exception("Error during story gen:"); st.error(f"🚨 Story gen error: {e}", icon="💥"); return None
183
 
184
 
185
- def generate_image_imagen(prompt: str, aspect_ratio: str = "1:1", task_id: str = "IMG") -> Optional[Image.Image]:
 
186
  """
187
- Generates an image.
188
- <<< IMPORTANT: This function needs to be rewritten using the Vertex AI SDK
189
- (google-cloud-aiplatform) to correctly call Imagen models. >>>
190
  """
191
- logger.info(f"🖼️ [{task_id}] Requesting image: '{prompt[:70]}...' (Aspect: {aspect_ratio})")
192
- logger.error(f" ❌ [{task_id}] Image generation skipped: Function needs update to use Vertex AI SDK for Imagen.")
193
- st.error(f"Image generation for {task_id} skipped: Requires Vertex AI SDK implementation.", icon="🖼️")
194
- # Return None because the current method is known to fail based on previous logs
195
- return None
196
-
197
- # --- Streamlit UI Elements ---
198
- st.sidebar.header("⚙️ Configuration")
199
- if GOOGLE_API_KEY: st.sidebar.success("Google API Key Loaded", icon="✅")
200
- else: st.sidebar.error("Google API Key Missing!", icon="🚨")
201
- theme = st.sidebar.text_input("📖 Story Theme:", "A curious squirrel finds a mysterious, glowing acorn")
202
- num_scenes = st.sidebar.slider("🎬 Scenes per Timeline:", min_value=2, max_value=7, value=3)
203
- num_timelines = st.sidebar.slider("🌿 Number of Timelines:", min_value=1, max_value=4, value=2)
204
- divergence_prompt = st.sidebar.text_input("↔️ Divergence Hint (Optional):", placeholder="e.g., What if a bird tried to steal it?")
205
- st.sidebar.subheader("🎨 Visual & Audio Settings")
206
- aspect_ratio = st.sidebar.selectbox("🖼️ Image Aspect Ratio:", ["1:1", "16:9", "9:16"], index=0)
207
- audio_voice = None
208
- generate_button = st.sidebar.button("✨ Generate ChronoWeave ✨", type="primary", disabled=(not GOOGLE_API_KEY), use_container_width=True)
209
- st.sidebar.markdown("---"); st.sidebar.info("⏳ Generation can take minutes."); st.sidebar.markdown(f"<small>Txt:{TEXT_MODEL_ID}, Img:{IMAGE_MODEL_ID}, Aud:{AUDIO_MODEL_ID}</small>", unsafe_allow_html=True)
210
-
211
- # --- Main Logic ---
212
- if generate_button:
213
- if not theme: st.error("Please enter a story theme.", icon="👈")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
214
  else:
215
- run_id = str(uuid.uuid4()).split('-')[0]; temp_dir = os.path.join(TEMP_DIR_BASE, f"run_{run_id}")
216
- try: os.makedirs(temp_dir, exist_ok=True); logger.info(f"Created temp dir: {temp_dir}")
217
- except OSError as e: st.error(f"🚨 Failed create temp dir {temp_dir}: {e}", icon="📂"); st.stop()
218
- final_video_paths, generation_errors = {}, {}
219
-
220
- chrono_response: Optional[ChronoWeaveResponse] = None
221
- with st.spinner("Generating narrative structure... 🤔"): chrono_response = generate_story_sequence_chrono(theme, num_scenes, num_timelines, divergence_prompt)
222
-
223
- if chrono_response:
224
- overall_start_time = time.time(); all_timelines_successful = True
225
- with st.status("Generating assets and composing videos...", expanded=True) as status:
226
- for timeline_index, timeline in enumerate(chrono_response.timelines):
227
- timeline_id, divergence, segments = timeline.timeline_id, timeline.divergence_reason, timeline.segments
228
- timeline_label = f"Timeline {timeline_id}"; st.subheader(f"Processing {timeline_label}: {divergence}")
229
- logger.info(f"--- Processing {timeline_label} (Idx: {timeline_index}) ---"); generation_errors[timeline_id] = []
230
- temp_image_files, temp_audio_files, video_clips = {}, {}, []
231
- timeline_start_time = time.time(); scene_success_count = 0
232
-
233
- for scene_index, segment in enumerate(segments):
234
- scene_id = segment.scene_id; task_id = f"T{timeline_id}_S{scene_id}"
235
- status.update(label=f"Processing {timeline_label}, Scene {scene_id + 1}/{len(segments)}...")
236
- st.markdown(f"--- **Scene {scene_id + 1} ({task_id})** ---")
237
- logger.info(f"Processing {timeline_label}, Scene {scene_id + 1}/{len(segments)}...")
238
- scene_has_error = False
239
- st.write(f" *Img Prompt:* {segment.image_prompt}" + (f" *(Mod: {segment.timeline_visual_modifier})*" if segment.timeline_visual_modifier else "")); st.write(f" *Audio Text:* {segment.audio_text}")
240
-
241
- # --- 2a. Image Generation ---
242
- generated_image: Optional[Image.Image] = None
243
- with st.spinner(f"[{task_id}] Generating image... 🎨"):
244
- combined_prompt = segment.image_prompt
245
- if segment.character_description: combined_prompt += f" Featuring: {segment.character_description}"
246
- if segment.timeline_visual_modifier: combined_prompt += f" Style hint: {segment.timeline_visual_modifier}."
247
- generated_image = generate_image_imagen(combined_prompt, aspect_ratio, task_id) # <<< Needs Vertex AI SDK update
248
- if generated_image:
249
- image_path = os.path.join(temp_dir, f"{task_id}_image.png")
250
- try: generated_image.save(image_path); temp_image_files[scene_id] = image_path; st.image(generated_image, width=180, caption=f"Scene {scene_id+1}")
251
- except Exception as e: logger.error(f" ❌ [{task_id}] Img save error: {e}"); st.error(f"Save image {task_id} failed.", icon="💾"); scene_has_error = True; generation_errors[timeline_id].append(f"S{scene_id+1}: Img save fail.")
252
- else: scene_has_error = True; generation_errors[timeline_id].append(f"S{scene_id+1}: Img gen fail."); continue
253
-
254
- # --- 2b. Audio Generation ---
255
- generated_audio_path: Optional[str] = None
256
- if not scene_has_error: # Should not be reached currently due to image fail
257
- with st.spinner(f"[{task_id}] Generating audio... 🔊"):
258
- audio_path_temp = os.path.join(temp_dir, f"{task_id}_audio.wav")
259
- try: generated_audio_path = asyncio.run(generate_audio_live_async(segment.audio_text, audio_path_temp, audio_voice))
260
- except RuntimeError as e: logger.error(f" ❌ [{task_id}] Asyncio error: {e}"); st.error(f"Asyncio audio error {task_id}: {e}", icon="⚡"); scene_has_error = True; generation_errors[timeline_id].append(f"S{scene_id+1}: Audio async err.")
261
- except Exception as e: logger.exception(f" ❌ [{task_id}] Audio error: {e}"); st.error(f"Audio error {task_id}: {e}", icon="💥"); scene_has_error = True; generation_errors[timeline_id].append(f"S{scene_id+1}: Audio gen err.")
262
- if generated_audio_path:
263
- temp_audio_files[scene_id] = generated_audio_path; try: open(generated_audio_path,'rb') as ap: st.audio(ap.read(), format='audio/wav')
264
- except Exception as e: logger.warning(f" ⚠️ [{task_id}] Audio preview error: {e}")
265
- else: scene_has_error = True; generation_errors[timeline_id].append(f"S{scene_id+1}: Audio gen fail."); continue
266
-
267
- # --- 2c. Create Video Clip ---
268
- if not scene_has_error and scene_id in temp_image_files and scene_id in temp_audio_files: # Should not be reached currently
269
- st.write(f" 🎬 Creating clip S{scene_id+1}..."); img_path, aud_path = temp_image_files[scene_id], temp_audio_files[scene_id]
270
- audio_clip_instance, image_clip_instance, composite_clip = None, None, None
271
- try:
272
- if not os.path.exists(img_path): raise FileNotFoundError(f"Img missing: {img_path}")
273
- if not os.path.exists(aud_path): raise FileNotFoundError(f"Aud missing: {aud_path}")
274
- audio_clip_instance = AudioFileClip(aud_path); np_image = np.array(Image.open(img_path))
275
- image_clip_instance = ImageClip(np_image).set_duration(audio_clip_instance.duration)
276
- composite_clip = image_clip_instance.set_audio(audio_clip_instance); video_clips.append(composite_clip)
277
- logger.info(f" ✅ [{task_id}] Clip created (Dur: {audio_clip_instance.duration:.2f}s)."); st.write(f" ✅ Clip created (Dur: {audio_clip_instance.duration:.2f}s)."); scene_success_count += 1
278
- except Exception as e: logger.exception(f" ❌ [{task_id}] Failed clip creation: {e}"); st.error(f"Failed clip {task_id}: {e}", icon="🎬"); scene_has_error = True; generation_errors[timeline_id].append(f"S{scene_id+1}: Clip fail.")
279
- finally:
280
- if audio_clip_instance: audio_clip_instance.close();
281
- if image_clip_instance: image_clip_instance.close()
282
-
283
- # --- 2d. Assemble Timeline Video ---
284
- timeline_duration = time.time() - timeline_start_time
285
- if video_clips and scene_success_count == len(segments):
286
- status.update(label=f"Composing video {timeline_label}..."); st.write(f"🎞️ Assembling video {timeline_label}..."); logger.info(f"🎞️ Assembling video {timeline_label}...")
287
- output_filename = os.path.join(temp_dir, f"timeline_{timeline_id}_final.mp4"); final_timeline_video = None
288
- try: final_timeline_video = concatenate_videoclips(video_clips, method="compose"); final_timeline_video.write_videofile(output_filename, fps=VIDEO_FPS, codec=VIDEO_CODEC, audio_codec=AUDIO_CODEC, logger=None); final_video_paths[timeline_id] = output_filename; logger.info(f" ✅ [{timeline_label}] Video saved: {os.path.basename(output_filename)}"); st.success(f"✅ Video {timeline_label} completed in {timeline_duration:.2f}s.")
289
- except Exception as e: logger.exception(f" ❌ [{timeline_label}] Video assembly failed: {e}"); st.error(f"Assemble video {timeline_label} failed: {e}", icon="📼"); all_timelines_successful = False; generation_errors[timeline_id].append(f"T{timeline_id}: Assembly fail.")
290
- finally:
291
- logger.debug(f"[{timeline_label}] Closing {len(video_clips)} clips...");
292
- for i, clip in enumerate(video_clips): try: clip.close() except Exception as e_close: logger.warning(f" ⚠️ [{timeline_label}] Clip close err {i}: {e_close}")
293
- if final_timeline_video: try: final_timeline_video.close() except Exception as e_close_final: logger.warning(f" ⚠️ [{timeline_label}] Final vid close err: {e_close_final}")
294
- elif not video_clips: logger.warning(f"[{timeline_label}] No clips. Skip assembly."); st.warning(f"No scenes for {timeline_label}. No video.", icon="🚫"); all_timelines_successful = False
295
- else: error_count = len(generation_errors[timeline_id]); logger.warning(f"[{timeline_label}] {error_count} scene err(s). Skip assembly."); st.warning(f"{timeline_label}: {error_count} err(s). Video not assembled.", icon="⚠️"); all_timelines_successful = False
296
- if generation_errors[timeline_id]: logger.error(f"Errors {timeline_label}: {generation_errors[timeline_id]}")
297
-
298
- # --- End of Timelines Loop ---
299
- overall_duration = time.time() - overall_start_time
300
- if all_timelines_successful and final_video_paths: status_msg = f"Complete! ({len(final_video_paths)} videos in {overall_duration:.2f}s)"; status.update(label=status_msg, state="complete", expanded=False); logger.info(status_msg)
301
- elif final_video_paths: status_msg = f"Partially Complete ({len(final_video_paths)} videos, errors). {overall_duration:.2f}s"; status.update(label=status_msg, state="warning", expanded=True); logger.warning(status_msg)
302
- else: status_msg = f"Failed. No videos. {overall_duration:.2f}s"; status.update(label=status_msg, state="error", expanded=True); logger.error(status_msg)
303
-
304
- # --- 3. Display Results ---
305
- st.header("🎬 Generated Timelines")
306
- if final_video_paths:
307
- sorted_timeline_ids = sorted(final_video_paths.keys()); num_cols = min(len(sorted_timeline_ids), 3); cols = st.columns(num_cols)
308
- for idx, timeline_id in enumerate(sorted_timeline_ids):
309
- col = cols[idx % num_cols]; video_path = final_video_paths[timeline_id]
310
- timeline_data = next((t for t in chrono_response.timelines if t.timeline_id == timeline_id), None)
311
- reason = timeline_data.divergence_reason if timeline_data else "Unknown"
312
- with col:
313
- st.subheader(f"Timeline {timeline_id}"); st.caption(f"Divergence: {reason}")
314
- try:
315
- with open(video_path, 'rb') as vf: video_bytes = vf.read()
316
- st.video(video_bytes); logger.info(f"Displaying T{timeline_id}")
317
- st.download_button(f"Download T{timeline_id}", video_bytes, f"timeline_{timeline_id}.mp4", "video/mp4", key=f"dl_{timeline_id}")
318
- if generation_errors.get(timeline_id):
319
- scene_errors = [err for err in generation_errors[timeline_id] if not err.startswith(f"T{timeline_id}:")]
320
- if scene_errors:
321
- with st.expander(f"⚠️ View {len(scene_errors)} Scene Issues"):
322
- for err in scene_errors: st.warning(f"- {err}")
323
- except FileNotFoundError: logger.error(f"Video missing: {video_path}"); st.error(f"Error: Video missing T{timeline_id}.", icon="🚨")
324
- except Exception as e: logger.exception(f"Display error {video_path}: {e}"); st.error(f"Display error T{timeline_id}: {e}", icon="🚨")
325
- else: # No videos generated
326
- st.warning("No final videos were successfully generated.")
327
- st.subheader("Summary of Generation Issues")
328
- has_errors = any(generation_errors.values())
329
- if has_errors:
330
- with st.expander("View All Errors", expanded=True):
331
- for tid, errors in generation_errors.items():
332
- if errors:
333
- st.error(f"**Timeline {tid}:**")
334
- for msg in errors: st.error(f" - {msg}") # Use standard loop
335
- else: st.info("No generation errors recorded.")
336
-
337
- # --- 4. Cleanup ---
338
- st.info(f"Attempting cleanup: {temp_dir}")
339
- try: shutil.rmtree(temp_dir); logger.info(f"✅ Temp dir removed: {temp_dir}"); st.success("✅ Temp files cleaned.")
340
- except Exception as e: logger.error(f"⚠️ Failed remove temp dir {temp_dir}: {e}"); st.warning(f"Could not remove temp files: {temp_dir}.", icon="⚠️")
341
-
342
- elif not chrono_response: logger.error("Story gen/validation failed.")
343
- else: st.error("Unexpected issue post-gen.", icon="🛑"); logger.error("Chrono_response truthy but invalid.")
344
-
345
- else: st.info("Configure settings and click '✨ Generate ChronoWeave ✨' to start.")
 
1
+ # Copyright 2025 Google LLC.
2
+ # Based on work by Yousif Ahmed.
3
+ # Concept: ChronoWeave Branching Narrative Generation
4
+ # Licensed under the Apache License, Version 2.0 (the "License").
5
+ # You may not use this file except in compliance with the License.
6
+ # Obtain a copy of the License at: http://www.apache.org/licenses/LICENSE-2.0
7
 
 
 
8
  import os
9
  import json
 
 
10
  import time
11
+ import uuid
 
12
  import asyncio
13
+ import logging
14
+ import shutil
15
+ import contextlib
16
+ import wave
17
+ from io import BytesIO
18
+ from typing import List, Optional, Tuple, Dict, Any
19
 
20
+ import streamlit as st
21
+ import numpy as np
22
  from PIL import Image
23
+
24
  # Pydantic for data validation
25
  from pydantic import BaseModel, Field, ValidationError, field_validator, model_validator
 
26
 
27
  # Video and audio processing
28
  from moviepy.editor import ImageClip, AudioFileClip, concatenate_videoclips
 
29
 
30
+ # Google Generative AI library and async patch
31
+ import google.generativeai as genai
 
 
32
  import nest_asyncio
33
+ nest_asyncio.apply() # Ensure asyncio works correctly in Streamlit/Jupyter
34
 
35
  # --- Logging Setup ---
36
+ logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
37
  logger = logging.getLogger(__name__)
38
 
39
+ # --- Constants & Configurations ---
40
+ TEXT_MODEL_ID = "models/gemini-1.5-flash" # Alternatively "gemini-1.5-pro"
41
+ AUDIO_MODEL_ID = "models/gemini-1.5-flash" # Synchronous generation for audio now
 
 
 
 
 
 
 
 
 
 
42
  AUDIO_SAMPLING_RATE = 24000
43
+ IMAGE_MODEL_ID = "imagen-3" # NOTE: Requires Vertex AI SDK integration in the future
 
44
  DEFAULT_ASPECT_RATIO = "1:1"
 
45
  VIDEO_FPS = 24
46
  VIDEO_CODEC = "libx264"
47
  AUDIO_CODEC = "aac"
 
48
  TEMP_DIR_BASE = ".chrono_temp"
49
 
50
+
51
+ # --- Pydantic Schemas ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
52
  class StorySegment(BaseModel):
53
  scene_id: int = Field(..., ge=0)
54
  image_prompt: str = Field(..., min_length=10, max_length=250)
55
  audio_text: str = Field(..., min_length=5, max_length=150)
56
  character_description: str = Field(..., max_length=250)
57
  timeline_visual_modifier: Optional[str] = Field(None, max_length=50)
58
+
59
+ @field_validator("image_prompt")
60
  @classmethod
61
  def image_prompt_no_humans(cls, v: str) -> str:
62
+ if any(word in v.lower() for word in ["person", "people", "human", "man", "woman", "boy", "girl", "child"]):
63
+ logger.warning(f"Image prompt '{v[:50]}...' may include human-related descriptions.")
64
  return v
65
+
66
+
67
  class Timeline(BaseModel):
68
  timeline_id: int = Field(..., ge=0)
69
  divergence_reason: str = Field(..., min_length=5)
70
  segments: List[StorySegment] = Field(..., min_items=1)
71
+
72
+
73
  class ChronoWeaveResponse(BaseModel):
74
  core_theme: str = Field(..., min_length=5)
75
  timelines: List[Timeline] = Field(..., min_items=1)
76
  total_scenes_per_timeline: int = Field(..., gt=0)
77
+
78
+ @model_validator(mode="after")
79
+ def check_timeline_segment_count(self) -> "ChronoWeaveResponse":
80
  expected = self.total_scenes_per_timeline
81
+ for i, timeline in enumerate(self.timelines):
82
+ if len(timeline.segments) != expected:
83
+ raise ValueError(f"Timeline {i} (ID: {timeline.timeline_id}): Expected {expected} segments, got {len(timeline.segments)}.")
84
  return self
85
 
86
+
87
  # --- Helper Functions ---
88
  @contextlib.contextmanager
89
  def wave_file_writer(filename: str, channels: int = 1, rate: int = AUDIO_SAMPLING_RATE, sample_width: int = 2):
90
+ """
91
+ Safely writes a WAV file using a context manager.
92
+ """
93
  wf = None
94
  try:
95
+ wf = wave.open(filename, "wb")
96
+ wf.setnchannels(channels)
97
+ wf.setsampwidth(sample_width) # 16-bit audio (2 bytes)
98
+ wf.setframerate(rate)
99
  yield wf
100
+ except Exception as exc:
101
+ logger.error(f"Error writing wave file {filename}: {exc}")
102
+ raise
103
  finally:
104
+ if wf:
105
+ try:
106
+ wf.close()
107
+ except Exception as e_close:
108
+ logger.error(f"Error closing wave file {filename}: {e_close}")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
109
 
110
 
111
+ # --- ChronoWeave Generator Class ---
112
+ class ChronoWeaveGenerator:
113
  """
114
+ Encapsulates the logic for generating branching narratives,
115
+ processing audio, images, and assembling video outputs.
 
116
  """
117
+
118
+ def __init__(self, api_key: str):
119
+ self.api_key = api_key
120
+ genai.configure(api_key=self.api_key)
121
+
122
+ try:
123
+ self.client_text = genai.GenerativeModel(TEXT_MODEL_ID)
124
+ logger.info(f"Initialized text model: {TEXT_MODEL_ID}")
125
+ self.client_audio = genai.GenerativeModel(AUDIO_MODEL_ID)
126
+ logger.info(f"Initialized audio model: {AUDIO_MODEL_ID}")
127
+ self.client_image = genai.GenerativeModel(IMAGE_MODEL_ID)
128
+ logger.info(f"Initialized image model: {IMAGE_MODEL_ID} (Placeholder: Update to Vertex AI SDK)")
129
+ except Exception as exc:
130
+ logger.exception("Failed to initialize Google Clients/Models.")
131
+ raise exc
132
+
133
+ def generate_story_structure(
134
+ self, theme: str, num_scenes: int, num_timelines: int, divergence_prompt: str = ""
135
+ ) -> Optional[ChronoWeaveResponse]:
136
+ """
137
+ Generates a story structure as JSON using the text model and validates it via Pydantic.
138
+ """
139
+ st.info(f"Generating {num_timelines} timeline(s) with {num_scenes} scene(s) for theme: '{theme}'")
140
+ logger.info(f"Story generation request: Theme='{theme}', Timelines={num_timelines}, Scenes={num_scenes}")
141
+
142
+ divergence_instruction = (
143
+ f"Introduce clear divergence after the first scene. Hint: '{divergence_prompt}'. "
144
+ f"For timeline_id 0, use 'Initial path' or 'Baseline scenario'."
145
+ )
146
+
147
+ prompt = f"""Act as a narrative designer. Create a story for the theme: "{theme}".
148
+ Instructions:
149
+ 1. Exactly **{num_timelines}** timelines.
150
+ 2. Each timeline must consist of exactly **{num_scenes}** scenes.
151
+ 3. **NO humans/humanoids**; focus on animals, fantasy creatures, animated objects, and nature.
152
+ 4. {divergence_instruction}
153
+ 5. Style: **'Simple, friendly kids animation, bright colors, rounded shapes'** unless modified by `timeline_visual_modifier`.
154
+ 6. `audio_text`: One concise sentence (max 30 words).
155
+ 7. `image_prompt`: Descriptive prompt (15–35 words) emphasizing scene elements. **Avoid repeating general style.**
156
+ 8. `character_description`: Very brief (name and features; < 20 words).
157
+
158
+ Output only a valid JSON object conforming exactly to this schema:
159
+ JSON Schema: ```json
160
+ {json.dumps(ChronoWeaveResponse.model_json_schema(), indent=2)}
161
+ ```"""
162
+
163
+ try:
164
+ response = self.client_text.generate_content(
165
+ contents=prompt,
166
+ generation_config=genai.types.GenerationConfig(
167
+ response_mime_type="application/json", temperature=0.7
168
+ ),
169
+ )
170
+ raw_data = json.loads(response.text)
171
+ validated_data = ChronoWeaveResponse.model_validate(raw_data)
172
+ st.success("Story structure validated successfully!")
173
+ return validated_data
174
+
175
+ except json.JSONDecodeError as json_err:
176
+ logger.error(f"JSON decode failed: {json_err}\nResponse: {response.text}")
177
+ st.error(f"🚨 JSON Parsing Error: {json_err}", icon="📄")
178
+ st.text_area("Response", response.text, height=150)
179
+ except ValidationError as val_err:
180
+ logger.error(f"Pydantic validation error: {val_err}\nData: {json.dumps(raw_data, indent=2)}")
181
+ st.error(f"🚨 Invalid story structure: {val_err}", icon="🧬")
182
+ st.json(raw_data)
183
+ except Exception as e:
184
+ logger.exception("Story generation error:")
185
+ st.error(f"🚨 Error generating story: {e}", icon="💥")
186
+ return None
187
+
188
+ async def generate_audio(self, text: str, output_filename: str, voice: Optional[str] = None) -> Optional[str]:
189
+ """
190
+ Asynchronously generates audio by wrapping the synchronous generate_content call.
191
+ The call is executed using asyncio.to_thread to avoid blocking.
192
+ """
193
+ task_id = os.path.basename(output_filename).split(".")[0]
194
+ logger.info(f"🎙️ [{task_id}] Generating audio for text: '{text[:60]}...'")
195
+
196
+ try:
197
+ # Define a synchronous function for audio generation.
198
+ def sync_generate_audio():
199
+ prompt = f"Narrate directly: \"{text}\""
200
+ response = self.client_audio.generate_content(
201
+ contents=prompt,
202
+ generation_config=genai.types.GenerationConfig(
203
+ response_mime_type="application/octet-stream",
204
+ temperature=0.7,
205
+ audio_config={"audio_encoding": "LINEAR16", "sample_rate_hertz": AUDIO_SAMPLING_RATE}
206
+ )
207
+ )
208
+ return response
209
+
210
+ # Execute the synchronous call in a separate thread.
211
+ response = await asyncio.to_thread(sync_generate_audio)
212
+
213
+ # Process the response. Adjust as necessary based on the API’s actual response structure.
214
+ if not response or not hasattr(response, "audio_chunk") or not response.audio_chunk.data:
215
+ logger.error(f"❌ [{task_id}] No audio data returned.")
216
+ st.error(f"Audio generation failed for {task_id}: No audio data.", icon="🔊")
217
+ return None
218
+
219
+ audio_data = response.audio_chunk.data
220
+ with wave_file_writer(output_filename) as wf:
221
+ wf.writeframes(audio_data)
222
+ logger.info(f"✅ [{task_id}] Audio saved: {os.path.basename(output_filename)} ({len(audio_data)} bytes)")
223
+ return output_filename
224
+
225
+ except Exception as e:
226
+ logger.exception(f"❌ [{task_id}] Audio generation error: {e}")
227
+ st.error(f"Audio generation failed for {task_id}: {e}", icon="🔊")
228
+ return None
229
+
230
+ async def generate_image_async(self, prompt: str, aspect_ratio: str, task_id: str) -> Optional[Image.Image]:
231
+ """
232
+ Placeholder for image generation.
233
+ Currently logs an error and returns None. Update this function once integrating Vertex AI SDK.
234
+ """
235
+ logger.info(f"🖼️ [{task_id}] Requesting image for prompt: '{prompt[:70]}...' (Aspect Ratio: {aspect_ratio})")
236
+ logger.error(f"❌ [{task_id}] Image generation not implemented. Update required for Vertex AI.")
237
+ st.error(f"Image generation for {task_id} skipped: Requires Vertex AI SDK implementation.", icon="🖼️")
238
+ return None
239
+
240
+ async def process_scene(
241
+ self,
242
+ timeline_id: int,
243
+ segment: StorySegment,
244
+ temp_dir: str,
245
+ aspect_ratio: str,
246
+ audio_voice: Optional[str] = None,
247
+ ) -> Tuple[Optional[str], Optional[str], Optional[Any], List[str]]:
248
+ """
249
+ Processes a single scene: concurrently generates image and audio,
250
+ and then creates a video clip if both outputs are available.
251
+ Returns a tuple of (image_path, audio_path, video_clip, [error messages]).
252
+ """
253
+ errors: List[str] = []
254
+ task_id = f"T{timeline_id}_S{segment.scene_id}"
255
+ image_path = os.path.join(temp_dir, f"{task_id}_image.png")
256
+ audio_path = os.path.join(temp_dir, f"{task_id}_audio.wav")
257
+ video_clip = None
258
+
259
+ # Launch image and audio generation concurrently.
260
+ image_future = asyncio.create_task(
261
+ self.generate_image_async(
262
+ prompt=f"{segment.image_prompt} Featuring: {segment.character_description} " +
263
+ (f"Style hint: {segment.timeline_visual_modifier}" if segment.timeline_visual_modifier else ""),
264
+ aspect_ratio=aspect_ratio,
265
+ task_id=task_id,
266
+ )
267
+ )
268
+ audio_future = asyncio.create_task(self.generate_audio(segment.audio_text, audio_path, audio_voice))
269
+
270
+ image_result, audio_result = await asyncio.gather(image_future, audio_future)
271
+
272
+ if image_result:
273
+ try:
274
+ image_result.save(image_path)
275
+ st.image(image_result, width=180, caption=f"Scene {segment.scene_id + 1}")
276
+ except Exception as e:
277
+ logger.error(f"❌ [{task_id}] Error saving image: {e}")
278
+ errors.append(f"Scene {segment.scene_id + 1}: Image save error.")
279
+ else:
280
+ errors.append(f"Scene {segment.scene_id + 1}: Image generation failed.")
281
+
282
+ if audio_result:
283
+ try:
284
+ with open(audio_result, "rb") as ap:
285
+ st.audio(ap.read(), format="audio/wav")
286
+ except Exception as e:
287
+ logger.warning(f"⚠️ [{task_id}] Audio preview error: {e}")
288
+ else:
289
+ errors.append(f"Scene {segment.scene_id + 1}: Audio generation failed.")
290
+
291
+ if not errors and os.path.exists(image_path) and os.path.exists(audio_path):
292
+ try:
293
+ audio_clip = AudioFileClip(audio_path)
294
+ np_img = np.array(Image.open(image_path))
295
+ img_clip = ImageClip(np_img).set_duration(audio_clip.duration)
296
+ video_clip = img_clip.set_audio(audio_clip)
297
+ logger.info(f"✅ [{task_id}] Video clip created (Duration: {audio_clip.duration:.2f}s).")
298
+ except Exception as e:
299
+ logger.exception(f"❌ [{task_id}] Failed to create video clip: {e}")
300
+ errors.append(f"Scene {segment.scene_id + 1}: Video clip creation failed.")
301
+ finally:
302
+ try:
303
+ if 'audio_clip' in locals():
304
+ audio_clip.close()
305
+ if 'img_clip' in locals():
306
+ img_clip.close()
307
+ except Exception:
308
+ pass
309
+
310
+ return (
311
+ image_path if os.path.exists(image_path) else None,
312
+ audio_path if os.path.exists(audio_path) else None,
313
+ video_clip,
314
+ errors,
315
+ )
316
+
317
+ async def process_timeline(
318
+ self,
319
+ timeline: Timeline,
320
+ temp_dir: str,
321
+ aspect_ratio: str,
322
+ audio_voice: Optional[str] = None,
323
+ ) -> Tuple[Optional[str], List[str]]:
324
+ """
325
+ Processes an entire timeline by concurrently processing all its scenes,
326
+ then assembling a final video if every scene produced a valid clip.
327
+ Returns a tuple of (final video path, list of error messages).
328
+ """
329
+ timeline_id = timeline.timeline_id
330
+ scene_tasks = [
331
+ self.process_scene(timeline_id, segment, temp_dir, aspect_ratio, audio_voice)
332
+ for segment in timeline.segments
333
+ ]
334
+ results = await asyncio.gather(*scene_tasks)
335
+ video_clips = []
336
+ timeline_errors: List[str] = []
337
+ for idx, (img_path, aud_path, clip, errs) in enumerate(results):
338
+ if errs:
339
+ timeline_errors.extend(errs)
340
+ if clip is not None:
341
+ video_clips.append(clip)
342
+
343
+ if video_clips and len(video_clips) == len(timeline.segments):
344
+ output_filename = os.path.join(temp_dir, f"timeline_{timeline_id}_final.mp4")
345
+ try:
346
+ final_video = concatenate_videoclips(video_clips, method="compose")
347
+ final_video.write_videofile(
348
+ output_filename, fps=VIDEO_FPS, codec=VIDEO_CODEC, audio_codec=AUDIO_CODEC, logger=None
349
+ )
350
+ logger.info(f"✅ Timeline {timeline_id} video saved: {output_filename}")
351
+ for clip in video_clips:
352
+ clip.close()
353
+ final_video.close()
354
+ return output_filename, timeline_errors
355
+ except Exception as e:
356
+ logger.exception(f"❌ Timeline {timeline_id} video assembly failed: {e}")
357
+ timeline_errors.append(f"Timeline {timeline_id}: Video assembly failed.")
358
+ else:
359
+ timeline_errors.append(f"Timeline {timeline_id}: Incomplete scenes; skipping video assembly.")
360
+ return None, timeline_errors
361
+
362
+
363
+ # --- Streamlit UI and Main Process ---
364
+ def main():
365
+ # API Key Retrieval
366
+ GOOGLE_API_KEY: Optional[str] = None
367
+ try:
368
+ GOOGLE_API_KEY = st.secrets["GOOGLE_API_KEY"]
369
+ logger.info("Google API Key loaded from Streamlit secrets.")
370
+ except KeyError:
371
+ GOOGLE_API_KEY = os.environ.get("GOOGLE_API_KEY")
372
+ if GOOGLE_API_KEY:
373
+ logger.info("Google API Key loaded from environment variable.")
374
+ else:
375
+ st.error("🚨 **Google API Key Not Found!** Please configure it.", icon="🚨")
376
+ st.stop()
377
+
378
+ st.set_page_config(page_title="ChronoWeave", layout="wide", initial_sidebar_state="expanded")
379
+ st.title("🌀 ChronoWeave: Advanced Branching Narrative Generator")
380
+ st.markdown("""
381
+ Generate multiple, branching story timelines from a single theme using AI – complete with images and narration.
382
+ *Based on work by Yousif Ahmed. Copyright 2025 Google LLC.*
383
+ """)
384
+
385
+ st.sidebar.header("⚙️ Configuration")
386
+ if GOOGLE_API_KEY:
387
+ st.sidebar.success("Google API Key Loaded", icon="✅")
388
+ else:
389
+ st.sidebar.error("Google API Key Missing!", icon="🚨")
390
+
391
+ theme = st.sidebar.text_input("📖 Story Theme:", "A curious squirrel finds a mysterious, glowing acorn")
392
+ num_scenes = st.sidebar.slider("🎬 Scenes per Timeline:", min_value=2, max_value=7, value=3)
393
+ num_timelines = st.sidebar.slider("🌿 Number of Timelines:", min_value=1, max_value=4, value=2)
394
+ divergence_prompt = st.sidebar.text_input("↔️ Divergence Hint (Optional):", placeholder="e.g., What if a bird tried to steal it?")
395
+ st.sidebar.subheader("🎨 Visual & Audio Settings")
396
+ aspect_ratio = st.sidebar.selectbox("🖼️ Image Aspect Ratio:", ["1:1", "16:9", "9:16"], index=0)
397
+ audio_voice = None
398
+
399
+ generate_button = st.sidebar.button("✨ Generate ChronoWeave ✨", type="primary", disabled=(not GOOGLE_API_KEY), use_container_width=True)
400
+ st.sidebar.markdown("---")
401
+ st.sidebar.info("⏳ Generation may take several minutes.")
402
+ st.sidebar.markdown(f"<small>Txt: {TEXT_MODEL_ID}, Img: {IMAGE_MODEL_ID}, Aud: {AUDIO_MODEL_ID}</small>", unsafe_allow_html=True)
403
+
404
+ if generate_button:
405
+ if not theme:
406
+ st.error("Please enter a story theme.", icon="👈")
407
+ return
408
+
409
+ run_id = str(uuid.uuid4()).split('-')[0]
410
+ temp_dir = os.path.join(TEMP_DIR_BASE, f"run_{run_id}")
411
+ try:
412
+ os.makedirs(temp_dir, exist_ok=True)
413
+ logger.info(f"Created temporary directory: {temp_dir}")
414
+ except OSError as e:
415
+ st.error(f"🚨 Failed to create temporary directory {temp_dir}: {e}", icon="📂")
416
+ st.stop()
417
+
418
+ # Instantiate ChronoWeaveGenerator and generate story structure.
419
+ generator = ChronoWeaveGenerator(GOOGLE_API_KEY)
420
+ chrono_response = None
421
+ with st.spinner("Generating narrative structure... 🤔"):
422
+ chrono_response = generator.generate_story_structure(theme, num_scenes, num_timelines, divergence_prompt)
423
+
424
+ if not chrono_response:
425
+ logger.error("Story generation or validation failed.")
426
+ return
427
+
428
+ overall_start_time = time.time()
429
+ final_video_paths: Dict[int, str] = {}
430
+ generation_errors: Dict[int, List[str]] = {}
431
+
432
+ async def process_all_timelines():
433
+ timeline_tasks = {
434
+ timeline.timeline_id: asyncio.create_task(
435
+ generator.process_timeline(timeline, temp_dir, aspect_ratio, audio_voice)
436
+ )
437
+ for timeline in chrono_response.timelines
438
+ }
439
+ results = await asyncio.gather(*timeline_tasks.values(), return_exceptions=False)
440
+ return results
441
+
442
+ with st.spinner("Processing scenes and assembling videos..."):
443
+ timeline_results = asyncio.run(process_all_timelines())
444
+
445
+ for timeline, (video_path, errors) in zip(chrono_response.timelines, timeline_results):
446
+ generation_errors[timeline.timeline_id] = errors
447
+ if video_path:
448
+ final_video_paths[timeline.timeline_id] = video_path
449
+
450
+ overall_duration = time.time() - overall_start_time
451
+ if final_video_paths:
452
+ st.success(f"Complete! ({len(final_video_paths)} video(s) created in {overall_duration:.2f}s)")
453
+ else:
454
+ st.error(f"Failed. No final videos generated in {overall_duration:.2f}s")
455
+
456
+ st.header("🎬 Generated Timelines")
457
+ if final_video_paths:
458
+ sorted_ids = sorted(final_video_paths.keys())
459
+ num_cols = min(len(sorted_ids), 3)
460
+ cols = st.columns(num_cols)
461
+ for idx, timeline_id in enumerate(sorted_ids):
462
+ video_path = final_video_paths[timeline_id]
463
+ timeline_data = next((t for t in chrono_response.timelines if t.timeline_id == timeline_id), None)
464
+ divergence = timeline_data.divergence_reason if timeline_data else "Unknown"
465
+ with cols[idx % num_cols]:
466
+ st.subheader(f"Timeline {timeline_id}")
467
+ st.caption(f"Divergence: {divergence}")
468
+ try:
469
+ with open(video_path, "rb") as vf:
470
+ video_bytes = vf.read()
471
+ st.video(video_bytes)
472
+ st.download_button(
473
+ f"Download Timeline {timeline_id}",
474
+ video_bytes,
475
+ file_name=f"timeline_{timeline_id}.mp4",
476
+ mime="video/mp4",
477
+ key=f"dl_{timeline_id}"
478
+ )
479
+ if generation_errors.get(timeline_id):
480
+ scene_errs = generation_errors[timeline_id]
481
+ if scene_errs:
482
+ with st.expander(f"⚠️ View Scene Issues ({len(scene_errs)})"):
483
+ for err in scene_errs:
484
+ st.warning(f"- {err}")
485
+ except FileNotFoundError:
486
+ st.error(f"Error: Video for Timeline {timeline_id} is missing.", icon="🚨")
487
+ except Exception as e:
488
+ st.error(f"Display error for Timeline {timeline_id}: {e}", icon="🚨")
489
+ else:
490
+ st.warning("No final videos were successfully generated.")
491
+ with st.expander("View All Generation Errors", expanded=True):
492
+ for tid, errs in generation_errors.items():
493
+ if errs:
494
+ st.error(f"Timeline {tid}:")
495
+ for msg in errs:
496
+ st.error(f" - {msg}")
497
+
498
+ st.info(f"Cleaning up temporary files: {temp_dir}")
499
+ try:
500
+ shutil.rmtree(temp_dir)
501
+ st.success("✅ Temporary files cleaned up.")
502
+ logger.info(f"Temporary directory removed: {temp_dir}")
503
+ except Exception as e:
504
+ st.warning(f"Could not remove temporary files at: {temp_dir}", icon="⚠️")
505
+ logger.error(f"Failed to remove temporary directory {temp_dir}: {e}")
506
  else:
507
+ st.info("Configure settings and click '✨ Generate ChronoWeave ✨' to start.")
508
+
509
+
510
+ if __name__ == "__main__":
511
+ main()