File size: 33,571 Bytes
e22eb13 e0b9b11 610a011 990e23e 92cb699 5089920 92cb699 200c5c4 e22eb13 610a011 e22eb13 610a011 f13d4b2 5089920 f13d4b2 610a011 5089920 610a011 5089920 610a011 4c2220b f13d4b2 287c9ca 3084a6c e0b9b11 610a011 3084a6c d44d308 3084a6c 610a011 200c5c4 09d5c67 610a011 3084a6c d44d308 610a011 cb93f9c 610a011 cb93f9c 610a011 3084a6c 610a011 e22eb13 610a011 e22eb13 610a011 e22eb13 610a011 cb93f9c 610a011 4da81e5 610a011 3084a6c 610a011 cb93f9c 610a011 3084a6c 5089920 3084a6c e22eb13 610a011 3084a6c 5089920 610a011 cb93f9c 610a011 4da81e5 610a011 3084a6c 610a011 d73d823 610a011 4da81e5 610a011 cb93f9c 610a011 e0b9b11 3084a6c 610a011 3084a6c 610a011 3084a6c 610a011 3084a6c 610a011 3084a6c 610a011 cb93f9c 610a011 8583908 610a011 3313da9 610a011 cb93f9c 610a011 3084a6c 610a011 59af6e7 610a011 3084a6c 610a011 59af6e7 610a011 cb93f9c 3084a6c 610a011 a219e07 3084a6c 610a011 b97795f 3084a6c 610a011 3084a6c 610a011 754c854 3313da9 610a011 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 |
# core/visual_engine.py
from PIL import Image, ImageDraw, ImageFont, ImageOps
# --- MONKEY PATCH ---
try:
if hasattr(Image, 'Resampling') and hasattr(Image.Resampling, 'LANCZOS'):
if not hasattr(Image, 'ANTIALIAS'): Image.ANTIALIAS = Image.Resampling.LANCZOS
elif hasattr(Image, 'LANCZOS'):
if not hasattr(Image, 'ANTIALIAS'): Image.ANTIALIAS = Image.LANCZOS
elif not hasattr(Image, 'ANTIALIAS'): print("WARNING: Pillow ANTIALIAS/Resampling issue.")
except Exception as e_mp: print(f"WARNING: ANTIALIAS patch error: {e_mp}")
from moviepy.editor import (ImageClip, VideoFileClip, concatenate_videoclips, TextClip,
CompositeVideoClip, AudioFileClip)
import moviepy.video.fx.all as vfx
import numpy as np
import os
import openai
import requests
import io
import time
import random
import logging
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
# --- SERVICE CLIENT IMPORTS (Keep as before) ---
ELEVENLABS_CLIENT_IMPORTED = False; ElevenLabsAPIClient = None; Voice = None; VoiceSettings = None
try:
from elevenlabs.client import ElevenLabs as ImportedElevenLabsClient
from elevenlabs import Voice as ImportedVoice, VoiceSettings as ImportedVoiceSettings
ElevenLabsAPIClient = ImportedElevenLabsClient; Voice = ImportedVoice; VoiceSettings = ImportedVoiceSettings
ELEVENLABS_CLIENT_IMPORTED = True; logger.info("ElevenLabs client components imported.")
except Exception as e_eleven: logger.warning(f"ElevenLabs client import failed: {e_eleven}. Audio disabled.")
RUNWAYML_SDK_IMPORTED = False; RunwayMLClient = None # Placeholder
try:
# from runwayml import RunwayClient # Hypothetical actual import
# RunwayMLClient = RunwayClient
# RUNWAYML_SDK_IMPORTED = True
logger.info("RunwayML SDK import is a placeholder.")
except ImportError: logger.warning("RunwayML SDK (placeholder) not found. RunwayML disabled.")
except Exception as e_runway_sdk: logger.warning(f"Error importing RunwayML SDK (placeholder): {e_runway_sdk}. RunwayML disabled.")
class VisualEngine:
def __init__(self, output_dir="temp_cinegen_media", default_elevenlabs_voice_id="Rachel"):
self.output_dir = output_dir
os.makedirs(self.output_dir, exist_ok=True)
self.font_filename = "DejaVuSans-Bold.ttf"
font_paths_to_try = [ self.font_filename, "/usr/share/fonts/truetype/dejavu/DejaVuSans-Bold.ttf", "/usr/share/fonts/truetype/liberation/LiberationSans-Bold.ttf", "/System/Library/Fonts/Supplemental/Arial.ttf", "C:/Windows/Fonts/arial.ttf", f"/usr/local/share/fonts/truetype/mycustomfonts/arial.ttf"]
self.font_path_pil = next((p for p in font_paths_to_try if os.path.exists(p)), None)
self.font_size_pil = 20; self.video_overlay_font_size = 30; self.video_overlay_font_color = 'white'
self.video_overlay_font = 'DejaVu-Sans-Bold'
try:
self.font = ImageFont.truetype(self.font_path_pil, self.font_size_pil) if self.font_path_pil else ImageFont.load_default()
if self.font_path_pil: logger.info(f"Pillow font: {self.font_path_pil}.")
else: logger.warning("Default Pillow font."); self.font_size_pil = 10
except IOError as e_font: logger.error(f"Pillow font IOError: {e_font}. Default."); self.font = ImageFont.load_default(); self.font_size_pil = 10
self.openai_api_key = None; self.USE_AI_IMAGE_GENERATION = False; self.dalle_model = "dall-e-3"; self.image_size_dalle3 = "1792x1024"
self.video_frame_size = (1280, 720)
self.elevenlabs_api_key = None; self.USE_ELEVENLABS = False; self.elevenlabs_client = None; self.elevenlabs_voice_id = default_elevenlabs_voice_id
if VoiceSettings and ELEVENLABS_CLIENT_IMPORTED: self.elevenlabs_voice_settings = VoiceSettings(stability=0.60, similarity_boost=0.80, style=0.15, use_speaker_boost=True)
else: self.elevenlabs_voice_settings = None
self.pexels_api_key = None; self.USE_PEXELS = False
self.runway_api_key = None; self.USE_RUNWAYML = False; self.runway_client = None # Placeholder client
logger.info("VisualEngine initialized.")
# --- API Key Setters (Keep as before) ---
def set_openai_api_key(self,k): self.openai_api_key=k; self.USE_AI_IMAGE_GENERATION=bool(k); logger.info(f"DALL-E ({self.dalle_model}) {'Ready.' if k else 'Disabled.'}")
def set_elevenlabs_api_key(self,api_key, voice_id_from_secret=None):
self.elevenlabs_api_key=api_key
if voice_id_from_secret: self.elevenlabs_voice_id = voice_id_from_secret
if api_key and ELEVENLABS_CLIENT_IMPORTED and ElevenLabsAPIClient:
try: self.elevenlabs_client = ElevenLabsAPIClient(api_key=api_key); self.USE_ELEVENLABS=bool(self.elevenlabs_client); logger.info(f"ElevenLabs Client {'Ready' if self.USE_ELEVENLABS else 'Failed Init'} (Voice ID: {self.elevenlabs_voice_id}).")
except Exception as e: logger.error(f"ElevenLabs client init error: {e}. Disabled.", exc_info=True); self.USE_ELEVENLABS=False
else: self.USE_ELEVENLABS=False; logger.info("ElevenLabs Disabled (no key or SDK).")
def set_pexels_api_key(self,k): self.pexels_api_key=k; self.USE_PEXELS=bool(k); logger.info(f"Pexels Search {'Ready.' if k else 'Disabled.'}")
def set_runway_api_key(self, k): # For RunwayML
self.runway_api_key = k
if k: # For Gen-4, we might not need an SDK client if using direct HTTP, or an SDK client might be initialized here
# if RUNWAYML_SDK_IMPORTED and RunwayMLClient:
# try:
# # self.runway_client = RunwayMLClient(api_key=k) # Actual SDK client init
# self.USE_RUNWAYML = True; logger.info("RunwayML Client (Placeholder SDK) Ready.")
# except Exception as e: logger.error(f"RunwayML client init error: {e}", exc_info=True); self.USE_RUNWAYML = False
# else: # No SDK, or direct HTTP calls are planned
self.USE_RUNWAYML = True; logger.info("RunwayML API Key set. (SDK integration is placeholder).")
else: self.USE_RUNWAYML = False; logger.info("RunwayML Disabled (no API key).")
# --- Helper Methods _get_text_dimensions, _create_placeholder_image_content, _search_pexels_image (Keep as before) ---
def _get_text_dimensions(self,tc,fo): di=fo.size if hasattr(fo,'size') else self.font_size_pil; return (0,di) if not tc else (lambda b:(b[2]-b[0],b[3]-b[1] if b[3]-b[1]>0 else di))(fo.getbbox(tc)) if hasattr(fo,'getbbox') else (lambda s:(s[0],s[1] if s[1]>0 else di))(fo.getsize(tc)) if hasattr(fo,'getsize') else (int(len(tc)*di*0.6),int(di*1.2))
def _create_placeholder_image_content(self,td,fn,sz=None):
if sz is None: sz = self.video_frame_size; img=Image.new('RGB',sz,color=(20,20,40));d=ImageDraw.Draw(img);pd=25;mw=sz[0]-(2*pd);ls=[];
if not td: td="(Placeholder Image)"
ws=td.split();cl=""
for w in ws: tl=cl+w+" ";raw_w,_=self._get_text_dimensions(tl,self.font);w=raw_w if raw_w > 0 else len(tl)*(self.font_size_pil*0.6);
if w<=mw:cl=tl;else:
if cl:ls.append(cl.strip());cl=w+" "
if cl.strip():ls.append(cl.strip())
if not ls and td:ls.append(td[:int(mw//(self._get_text_dimensions("A",self.font)[0]or 10))]+"..." if td else "(Text too long)");elif not ls:ls.append("(Placeholder Error)")
_,slh=self._get_text_dimensions("Ay",self.font);slh=slh if slh>0 else self.font_size_pil+2;mld=min(len(ls),(sz[1]-(2*pd))//(slh+2)) if slh>0 else 1;
if mld<=0:mld=1;yts=pd+(sz[1]-(2*pd)-mld*(slh+2))/2.0;yt=yts
for i in range(mld):lc=ls[i];lw,_=self._get_text_dimensions(lc,self.font);xt=(sz[0]-lw)/2.0;d.text((xt,yt),lc,font=self.font,fill=(200,200,180));yt+=slh+2
if i==6 and mld>7:d.text((xt,yt),"...",font=self.font,fill=(200,200,180));break
fp=os.path.join(self.output_dir,fn);
try:img.save(fp);return fp
except Exception as e:logger.error(f"Save placeholder img {fp}: {e}",exc_info=True);return None
def _search_pexels_image(self, q, ofnb):
if not self.USE_PEXELS or not self.pexels_api_key: return None; h={"Authorization":self.pexels_api_key};p={"query":q,"per_page":1,"orientation":"landscape","size":"large2x"}
pfn=ofnb.replace(".png",f"_pexels_{random.randint(1000,9999)}.jpg").replace(".mp4",f"_pexels_{random.randint(1000,9999)}.jpg");fp=os.path.join(self.output_dir,pfn)
try: logger.info(f"Pexels search: '{q}'");eq=" ".join(q.split()[:5]);p["query"]=eq;r=requests.get("https://api.pexels.com/v1/search",headers=h,params=p,timeout=20)
r.raise_for_status();d=r.json()
if d.get("photos") and len(d["photos"])>0:pu=d["photos"][0]["src"]["large2x"];ir=requests.get(pu,timeout=60);ir.raise_for_status();id=Image.open(io.BytesIO(ir.content))
if id.mode!='RGB':id=id.convert('RGB');id.save(fp);logger.info(f"Pexels saved: {fp}");return fp
else: logger.info(f"No Pexels for: '{eq}'")
except Exception as e:logger.error(f"Pexels error ('{q}'): {e}",exc_info=True);return None
# --- RunwayML Video Generation (Gen-4 Aligned Placeholder) ---
def _generate_video_clip_with_runwayml(self, text_prompt_for_motion, input_image_path, scene_identifier_filename_base, target_duration_seconds=5):
"""
Placeholder for Runway Gen-4. Requires an input image and a text prompt for motion.
target_duration_seconds should ideally be 5 or 10 for Gen-4.
"""
if not self.USE_RUNWAYML or not self.runway_api_key:
logger.warning("RunwayML not enabled/API key missing. Cannot generate video clip.")
return None
if not input_image_path or not os.path.exists(input_image_path):
logger.error(f"Runway Gen-4 requires an input image. Path not provided or invalid: {input_image_path}")
return None
# Gen-4 produces 5s or 10s. We can aim for the closest or let user choose via app.py if more control is needed.
# For simplicity, let's assume target_duration_seconds from Gemini/user is a suggestion.
# Actual API call would specify duration if supported, or model has fixed outputs.
runway_duration_param = 10 if target_duration_seconds > 7 else 5 # Example logic to map to 5s or 10s
output_video_filename = scene_identifier_filename_base.replace(".png", f"_runway_gen4_d{runway_duration_param}s.mp4")
output_video_filepath = os.path.join(self.output_dir, output_video_filename)
logger.info(f"Attempting Runway Gen-4 (Placeholder) with image: {os.path.basename(input_image_path)}, motion prompt: '{text_prompt_for_motion[:100]}...', target duration: {runway_duration_param}s")
# --- ACTUAL RUNWAY GEN-4 API/SDK CALL WOULD GO HERE ---
# This would involve:
# 1. Uploading input_image_path (if API requires it, or providing a URL).
# 2. Submitting the job with text_prompt_for_motion and desired parameters (duration, seed, etc.).
# 3. Polling for completion.
# 4. Downloading the resulting video to output_video_filepath.
# Example (very hypothetical SDK structure):
# try:
# if not self.runway_client: self.runway_client = RunwayMLClient(api_key=self.runway_api_key)
# runway_task = self.runway_client.gen4.generate(
# image_path=input_image_path,
# text_prompt=text_prompt_for_motion,
# duration_seconds=runway_duration_param, # Or let model default
# # ... other Gen-4 parameters like seed, motion_score, upscale, etc.
# )
# runway_task.wait_for_completion() # Blocks until done
# if runway_task.status == 'succeeded':
# runway_task.download_video(output_video_filepath)
# logger.info(f"Runway Gen-4 video saved to: {output_video_filepath}")
# return output_video_filepath
# else:
# logger.error(f"Runway Gen-4 task failed. Status: {runway_task.status}, Error: {runway_task.error_message}")
# return None
# except Exception as e_runway:
# logger.error(f"Error during actual Runway Gen-4 call: {e_runway}", exc_info=True)
# return None
# --- END ACTUAL RUNWAY GEN-4 API/SDK CALL ---
logger.warning("Using PLACEHOLDER video generation for Runway Gen-4.")
# Create a dummy video using the input image as a static frame for the placeholder
try:
img_clip = ImageClip(input_image_path).set_duration(runway_duration_param)
# Add a text overlay to indicate it's a placeholder
txt = f"Runway Gen-4 Placeholder\nInput: {os.path.basename(input_image_path)}\nMotion: {text_prompt_for_motion[:50]}..."
txt_clip = TextClip(txt, fontsize=24, color='white', font=self.video_overlay_font,
bg_color='rgba(0,0,0,0.5)', size=(self.video_frame_size[0]*0.8, None),
method='caption').set_duration(runway_duration_param).set_position('center')
final_placeholder_clip = CompositeVideoClip([img_clip, txt_clip], size=img_clip.size)
final_placeholder_clip.write_videofile(output_video_filepath, fps=fps, codec='libx264', preset='ultrafast', logger=None, threads=2)
logger.info(f"Runway Gen-4 placeholder video saved: {output_video_filepath}")
if hasattr(img_clip, 'close'): img_clip.close()
if hasattr(txt_clip, 'close'): txt_clip.close()
if hasattr(final_placeholder_clip, 'close'): final_placeholder_clip.close()
return output_video_filepath
except Exception as e_placeholder:
logger.error(f"Failed to create Runway Gen-4 placeholder video: {e_placeholder}", exc_info=True)
return None
def _create_placeholder_video_content(self, text_description, filename, duration=4, size=None): # Generic placeholder if input_image not available
# ... (Keep as before, used if Runway is selected but input image gen fails) ...
if size is None: size = self.video_frame_size; fp = os.path.join(self.output_dir, filename); tc = None
try:
tc = TextClip(text_description, fontsize=50, color='white', font=self.video_overlay_font, bg_color='black', size=size, method='caption').set_duration(duration)
tc.write_videofile(fp, fps=24, codec='libx264', preset='ultrafast', logger=None, threads=2)
logger.info(f"Generic placeholder video: {fp}"); return fp
except Exception as e: logger.error(f"Generic placeholder video error {fp}: {e}", exc_info=True); return None
finally:
if tc and hasattr(tc, 'close'): tc.close()
# --- generate_scene_asset (Updated for Gen-4 Workflow) ---
def generate_scene_asset(self, image_generation_prompt_text, # For DALL-E / Pexels
motion_prompt_text_for_video, # For Runway Gen-4 (motion only)
scene_data, scene_identifier_filename_base,
generate_as_video_clip=False, runway_target_duration=5):
base_name, _ = os.path.splitext(scene_identifier_filename_base)
asset_info = {'path': None, 'type': 'none', 'error': True, 'prompt_used': image_generation_prompt_text, 'error_message': 'Generation not attempted'}
# STEP 1: Generate the input image (DALL-E/Pexels/Placeholder) regardless of final asset type if video is chosen.
# This image will serve as the base for Runway Gen-4 if generate_as_video_clip is True.
input_image_for_runway_path = None
image_filename_with_ext = base_name + "_base_image.png" # Differentiate base image filename
image_filepath = os.path.join(self.output_dir, image_filename_with_ext)
temp_image_asset_info = {'error': True, 'prompt_used': image_generation_prompt_text, 'error_message': 'Base image generation not attempted'}
if self.USE_AI_IMAGE_GENERATION and self.openai_api_key:
max_r, att_n = 2, 0
for att_n in range(max_r):
try:
logger.info(f"Attempt {att_n+1} DALL-E (for base image): {image_generation_prompt_text[:100]}...")
cl = openai.OpenAI(api_key=self.openai_api_key, timeout=90.0)
r = cl.images.generate(model=self.dalle_model, prompt=image_generation_prompt_text, n=1, size=self.image_size_dalle3, quality="hd", response_format="url", style="vivid")
iu = r.data[0].url; rp = getattr(r.data[0], 'revised_prompt', None)
if rp: logger.info(f"DALL-E revised: {rp[:100]}...")
ir = requests.get(iu, timeout=120); ir.raise_for_status()
id_img = Image.open(io.BytesIO(ir.content)) # Renamed to avoid conflict
if id_img.mode != 'RGB': id_img = id_img.convert('RGB')
id_img.save(image_filepath); logger.info(f"DALL-E base image saved: {image_filepath}");
input_image_for_runway_path = image_filepath
temp_image_asset_info = {'path': image_filepath, 'type': 'image', 'error': False, 'prompt_used': image_generation_prompt_text, 'revised_prompt': rp}
break # Success
except openai.RateLimitError as e: logger.warning(f"OpenAI Rate Limit {att_n+1}: {e}. Retry..."); time.sleep(5*(att_n+1)); temp_image_asset_info['error_message']=str(e)
except Exception as e: logger.error(f"DALL-E error: {e}", exc_info=True); temp_image_asset_info['error_message']=str(e); break
if temp_image_asset_info['error']: logger.warning(f"DALL-E failed after {att_n+1} attempts for base image.")
if temp_image_asset_info['error'] and self.USE_PEXELS : # Try Pexels if DALL-E failed
pqt = scene_data.get('pexels_search_query_๊ฐ๋
', f"{scene_data.get('emotional_beat','')} {scene_data.get('setting_description','')}")
pp = self._search_pexels_image(pqt, image_filename_with_ext) # Pass base image filename
if pp: input_image_for_runway_path = pp; temp_image_asset_info = {'path': pp, 'type': 'image', 'error': False, 'prompt_used': f"Pexels: {pqt}"}
else: current_em = temp_image_asset_info.get('error_message',""); temp_image_asset_info['error_message']=(current_em + " Pexels failed.").strip()
if temp_image_asset_info['error']: # Fallback to placeholder for base image
logger.warning("Base image generation (DALL-E/Pexels) failed. Using placeholder for base image.")
ppt = temp_image_asset_info.get('prompt_used', image_generation_prompt_text)
php = self._create_placeholder_image_content(f"[Base Img Placeholder] {ppt[:100]}...", image_filename_with_ext)
if php: input_image_for_runway_path = php; temp_image_asset_info = {'path': php, 'type': 'image', 'error': False, 'prompt_used': ppt}
else: current_em=temp_image_asset_info.get('error_message',"");temp_image_asset_info['error_message']=(current_em + " Base placeholder failed.").strip()
# STEP 2: If video clip is requested and base image was successfully created, generate video with RunwayML
if generate_as_video_clip:
if self.USE_RUNWAYML and input_image_for_runway_path:
logger.info(f"Proceeding to Runway Gen-4 video clip generation for {base_name} using base image: {input_image_for_runway_path}")
video_path = self._generate_video_clip_with_runwayml(
text_prompt_for_motion=motion_prompt_text_for_video, # Use the motion-specific prompt
input_image_path=input_image_for_runway_path,
scene_identifier_filename_base=base_name, # Will append _runway_gen4.mp4
target_duration_seconds=runway_target_duration
)
if video_path and os.path.exists(video_path):
asset_info = {'path': video_path, 'type': 'video', 'error': False, 'prompt_used': motion_prompt_text_for_video, 'base_image_path': input_image_for_runway_path}
return asset_info # Successfully generated video
else:
logger.warning(f"RunwayML video clip generation failed for {base_name}. Using the base image as fallback.")
asset_info = temp_image_asset_info # Fallback to the base image
asset_info['error'] = True # Indicate video step failed, though base image might be okay
asset_info['error_message'] = "RunwayML video generation step failed; using base image."
asset_info['type'] = 'image' # Explicitly set to image as it's the fallback
return asset_info
elif not self.USE_RUNWAYML:
logger.warning("RunwayML selected but not enabled/configured. Using base image.")
asset_info = temp_image_asset_info
asset_info['error_message'] = "RunwayML disabled; using base image."
asset_info['type'] = 'image'
return asset_info
else: # No input_image_for_runway_path
logger.error("Cannot generate RunwayML video: base image generation failed entirely.")
asset_info = temp_image_asset_info # This will have error=True
asset_info['error_message'] = (asset_info.get('error_message',"") + " Base image failed, so Runway video not attempted.").strip()
asset_info['type'] = 'image' # Even though it failed, its type was image
return asset_info
else: # Image was requested directly
asset_info = temp_image_asset_info # Return the result of the base image generation
return asset_info
# --- generate_narration_audio (Keep as before) ---
def generate_narration_audio(self, text_to_narrate, output_filename="narration_overall.mp3"):
if not self.USE_ELEVENLABS or not self.elevenlabs_client or not text_to_narrate: logger.info("11L skip."); return None; afp=os.path.join(self.output_dir,output_filename)
try: logger.info(f"11L audio (Voice:{self.elevenlabs_voice_id}): {text_to_narrate[:70]}..."); asm=None
if hasattr(self.elevenlabs_client,'text_to_speech')and hasattr(self.elevenlabs_client.text_to_speech,'stream'):asm=self.elevenlabs_client.text_to_speech.stream;logger.info("11L .text_to_speech.stream()")
elif hasattr(self.elevenlabs_client,'generate_stream'):asm=self.elevenlabs_client.generate_stream;logger.info("11L .generate_stream()")
elif hasattr(self.elevenlabs_client,'generate'):logger.info("11L .generate()");vp=Voice(voice_id=str(self.elevenlabs_voice_id),settings=self.elevenlabs_voice_settings)if Voice and self.elevenlabs_voice_settings else str(self.elevenlabs_voice_id);ab=self.elevenlabs_client.generate(text=text_to_narrate,voice=vp,model="eleven_multilingual_v2");
with open(afp,"wb")as f:f.write(ab);logger.info(f"11L audio (non-stream): {afp}");return afp
else:logger.error("No 11L audio method.");return None
if asm:vps={"voice_id":str(self.elevenlabs_voice_id)}
if self.elevenlabs_voice_settings:
if hasattr(self.elevenlabs_voice_settings,'model_dump'):vps["voice_settings"]=self.elevenlabs_voice_settings.model_dump()
elif hasattr(self.elevenlabs_voice_settings,'dict'):vps["voice_settings"]=self.elevenlabs_voice_settings.dict()
else:vps["voice_settings"]=self.elevenlabs_voice_settings
adi=asm(text=text_to_narrate,model_id="eleven_multilingual_v2",**vps)
with open(afp,"wb")as f:
for c in adi:
if c:f.write(c)
logger.info(f"11L audio (stream): {afp}");return afp
except Exception as e:logger.error(f"11L audio error: {e}",exc_info=True);return None
# --- assemble_animatic_from_assets (Keep robust version from previous step, ensuring C-contiguous array and debug saves) ---
def assemble_animatic_from_assets(self, asset_data_list, overall_narration_path=None, output_filename="final_video.mp4", fps=24):
if not asset_data_list: logger.warning("No assets for animatic."); return None
processed_clips = []; narration_clip = None; final_clip = None
logger.info(f"Assembling from {len(asset_data_list)} assets. Frame: {self.video_frame_size}.")
for i, asset_info in enumerate(asset_data_list):
asset_path, asset_type, scene_dur = asset_info.get('path'), asset_info.get('type'), asset_info.get('duration', 4.5)
scene_num, key_action = asset_info.get('scene_num', i + 1), asset_info.get('key_action', '')
logger.info(f"S{scene_num}: Path='{asset_path}', Type='{asset_type}', Dur='{scene_dur}'s")
if not (asset_path and os.path.exists(asset_path)): logger.warning(f"S{scene_num}: Not found '{asset_path}'. Skip."); continue
if scene_dur <= 0: logger.warning(f"S{scene_num}: Invalid duration ({scene_dur}s). Skip."); continue
current_scene_mvpy_clip = None
try:
if asset_type == 'image':
pil_img = Image.open(asset_path); logger.debug(f"S{scene_num}: Loaded img. Mode:{pil_img.mode}, Size:{pil_img.size}")
img_rgba = pil_img.convert('RGBA') if pil_img.mode != 'RGBA' else pil_img.copy()
thumb = img_rgba.copy(); rf = Image.Resampling.LANCZOS if hasattr(Image.Resampling,'LANCZOS') else Image.BILINEAR; thumb.thumbnail(self.video_frame_size,rf)
cv_rgba = Image.new('RGBA',self.video_frame_size,(0,0,0,0)); xo,yo=(self.video_frame_size[0]-thumb.width)//2,(self.video_frame_size[1]-thumb.height)//2
cv_rgba.paste(thumb,(xo,yo),thumb)
final_rgb_pil = Image.new("RGB",self.video_frame_size,(0,0,0)); final_rgb_pil.paste(cv_rgba,mask=cv_rgba.split()[3])
# CRITICAL DEBUG: Save image fed to NumPy array
dbg_path = os.path.join(self.output_dir,f"debug_PRE_NUMPY_S{scene_num}.png"); final_rgb_pil.save(dbg_path); logger.info(f"DEBUG: Saved PRE_NUMPY_S{scene_num} to {dbg_path}")
frame_np = np.array(final_rgb_pil,dtype=np.uint8);
if not frame_np.flags['C_CONTIGUOUS']: frame_np=np.ascontiguousarray(frame_np,dtype=np.uint8)
logger.debug(f"S{scene_num}: NumPy for MoviePy. Shape:{frame_np.shape}, DType:{frame_np.dtype}, C-Contig:{frame_np.flags['C_CONTIGUOUS']}")
if frame_np.size==0 or frame_np.ndim!=3 or frame_np.shape[2]!=3: logger.error(f"S{scene_num}: Invalid NumPy. Skip."); continue
clip_base = ImageClip(frame_np,transparent=False).set_duration(scene_dur)
# CRITICAL DEBUG: Save frame from MoviePy clip
mvpy_dbg_path=os.path.join(self.output_dir,f"debug_MOVIEPY_FRAME_S{scene_num}.png"); clip_base.save_frame(mvpy_dbg_path,t=0.1); logger.info(f"DEBUG: Saved MOVIEPY_FRAME_S{scene_num} to {mvpy_dbg_path}")
clip_fx = clip_base
try: es=random.uniform(1.03,1.08); clip_fx=clip_base.fx(vfx.resize,lambda t:1+(es-1)*(t/scene_dur) if scene_dur>0 else 1).set_position('center')
except Exception as e: logger.error(f"S{scene_num} Ken Burns error: {e}",exc_info=False)
current_scene_mvpy_clip = clip_fx
elif asset_type == 'video':
src_clip=None
try:
src_clip=VideoFileClip(asset_path,target_resolution=(self.video_frame_size[1],self.video_frame_size[0])if self.video_frame_size else None)
tmp_clip=src_clip
if src_clip.duration!=scene_dur:
if src_clip.duration>scene_dur:tmp_clip=src_clip.subclip(0,scene_dur)
else:
if scene_dur/src_clip.duration > 1.5 and src_clip.duration>0.1:tmp_clip=src_clip.loop(duration=scene_dur)
else:tmp_clip=src_clip.set_duration(src_clip.duration);logger.info(f"S{scene_num} Video clip ({src_clip.duration:.2f}s) shorter than target ({scene_dur:.2f}s).")
current_scene_mvpy_clip=tmp_clip.set_duration(scene_dur)
if current_scene_mvpy_clip.size!=list(self.video_frame_size):current_scene_mvpy_clip=current_scene_mvpy_clip.resize(self.video_frame_size)
except Exception as e:logger.error(f"S{scene_num} Video load error '{asset_path}':{e}",exc_info=True);continue
finally:
if src_clip and src_clip is not current_scene_mvpy_clip and hasattr(src_clip,'close'):src_clip.close()
else: logger.warning(f"S{scene_num} Unknown asset type '{asset_type}'. Skip."); continue
if current_scene_mvpy_clip and key_action:
try:
to_dur=min(current_scene_mvpy_clip.duration-0.5,current_scene_mvpy_clip.duration*0.8)if current_scene_mvpy_clip.duration>0.5 else current_scene_mvpy_clip.duration
to_start=0.25 # (current_scene_mvpy_clip.duration-to_dur)/2.0
txt_c=TextClip(f"Scene {scene_num}\n{key_action}",fontsize=self.video_overlay_font_size,color=self.video_overlay_font_color,font=self.video_overlay_font,bg_color='rgba(10,10,20,0.7)',method='caption',align='West',size=(self.video_frame_size[0]*0.9,None),kerning=-1,stroke_color='black',stroke_width=1.5).set_duration(to_dur).set_start(to_start).set_position(('center',0.92),relative=True)
current_scene_mvpy_clip=CompositeVideoClip([current_scene_mvpy_clip,txt_c],size=self.video_frame_size,use_bgclip=True)
except Exception as e:logger.error(f"S{scene_num} TextClip error:{e}. No text.",exc_info=True)
if current_scene_mvpy_clip:processed_clips.append(current_scene_mvpy_clip);logger.info(f"S{scene_num} Processed. Dur:{current_scene_mvpy_clip.duration:.2f}s.")
except Exception as e:logger.error(f"MAJOR Error S{scene_num} ({asset_path}):{e}",exc_info=True)
finally:
if current_scene_mvpy_clip and hasattr(current_scene_mvpy_clip,'close'):
try: current_scene_mvpy_clip.close() # This might close the clip if it's a VideoFileClip directly
except: pass # Avoid error during cleanup
if not processed_clips:logger.warning("No clips processed. Abort.");return None
td=0.75
try:
logger.info(f"Concatenating {len(processed_clips)} clips.");
if len(processed_clips)>1:final_clip=concatenate_videoclips(processed_clips,padding=-td if td>0 else 0,method="compose")
elif processed_clips:final_clip=processed_clips[0]
if not final_clip:logger.error("Concatenation failed.");return None
logger.info(f"Concatenated dur:{final_clip.duration:.2f}s")
if td>0 and final_clip.duration>0:
if final_clip.duration>td*2:final_clip=final_clip.fx(vfx.fadein,td).fx(vfx.fadeout,td)
else:final_clip=final_clip.fx(vfx.fadein,min(td,final_clip.duration/2.0))
if overall_narration_path and os.path.exists(overall_narration_path) and final_clip.duration>0:
try:narration_clip=AudioFileClip(overall_narration_path);final_clip=final_clip.set_audio(narration_clip);logger.info("Narration added.")
except Exception as e:logger.error(f"Narration add error:{e}",exc_info=True)
elif final_clip.duration<=0:logger.warning("Video no duration. No audio.")
if final_clip and final_clip.duration>0:
op=os.path.join(self.output_dir,output_filename);logger.info(f"Writing video:{op} (Dur:{final_clip.duration:.2f}s)")
final_clip.write_videofile(op,fps=fps,codec='libx264',preset='medium',audio_codec='aac',temp_audiofile=os.path.join(self.output_dir,f'temp-audio-{os.urandom(4).hex()}.m4a'),remove_temp=True,threads=os.cpu_count()or 2,logger='bar',bitrate="5000k",ffmpeg_params=["-pix_fmt", "yuv420p"]) # Added pix_fmt
logger.info(f"Video created:{op}");return op
else:logger.error("Final clip invalid. No write.");return None
except Exception as e:logger.error(f"Video write error:{e}",exc_info=True);return None
finally:
logger.debug("Closing all MoviePy clips in `assemble_animatic_from_assets` finally block.")
# Close clips individually to catch errors without stopping others
for clip_obj in processed_clips:
if clip_obj and hasattr(clip_obj, 'close'):
try: clip_obj.close()
except Exception as e_close: logger.warning(f"Ignoring error closing a processed clip: {e_close}")
if narration_clip and hasattr(narration_clip, 'close'):
try: narration_clip.close()
except Exception as e_close_audio: logger.warning(f"Ignoring error closing narration clip: {e_close_audio}")
if final_clip and hasattr(final_clip, 'close'): # final_composite_clip_obj was renamed to final_clip
try: final_clip.close()
except Exception as e_close_final: logger.warning(f"Ignoring error closing final composite clip: {e_close_final}") |