File size: 33,571 Bytes
e22eb13
e0b9b11
610a011
 
 
 
 
 
 
 
 
 
 
 
990e23e
92cb699
 
 
 
 
5089920
92cb699
200c5c4
e22eb13
610a011
e22eb13
610a011
 
f13d4b2
5089920
f13d4b2
610a011
 
 
5089920
610a011
5089920
610a011
 
 
 
 
 
4c2220b
f13d4b2
287c9ca
3084a6c
e0b9b11
 
610a011
 
 
 
 
 
 
 
 
 
3084a6c
d44d308
3084a6c
 
 
 
610a011
200c5c4
09d5c67
610a011
 
 
 
3084a6c
d44d308
610a011
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cb93f9c
610a011
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cb93f9c
610a011
 
 
 
 
 
 
 
 
 
 
 
3084a6c
610a011
 
 
 
e22eb13
610a011
 
e22eb13
610a011
e22eb13
610a011
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cb93f9c
610a011
 
4da81e5
610a011
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3084a6c
610a011
 
 
cb93f9c
610a011
 
 
3084a6c
5089920
3084a6c
e22eb13
610a011
 
 
3084a6c
 
5089920
610a011
 
 
 
cb93f9c
610a011
 
 
 
4da81e5
610a011
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3084a6c
610a011
 
 
 
 
d73d823
610a011
 
 
 
 
 
 
 
4da81e5
610a011
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cb93f9c
610a011
e0b9b11
3084a6c
 
610a011
 
 
3084a6c
 
 
 
 
 
 
 
 
610a011
 
3084a6c
610a011
3084a6c
610a011
3084a6c
 
610a011
cb93f9c
610a011
 
 
 
 
 
 
 
 
 
8583908
610a011
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3313da9
610a011
 
 
 
cb93f9c
610a011
 
 
3084a6c
610a011
59af6e7
610a011
 
3084a6c
610a011
59af6e7
610a011
 
 
 
 
 
 
cb93f9c
3084a6c
610a011
 
a219e07
3084a6c
610a011
b97795f
3084a6c
610a011
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3084a6c
610a011
754c854
3313da9
610a011
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
# core/visual_engine.py
from PIL import Image, ImageDraw, ImageFont, ImageOps
# --- MONKEY PATCH ---
try:
    if hasattr(Image, 'Resampling') and hasattr(Image.Resampling, 'LANCZOS'):
        if not hasattr(Image, 'ANTIALIAS'): Image.ANTIALIAS = Image.Resampling.LANCZOS
    elif hasattr(Image, 'LANCZOS'):
         if not hasattr(Image, 'ANTIALIAS'): Image.ANTIALIAS = Image.LANCZOS
    elif not hasattr(Image, 'ANTIALIAS'): print("WARNING: Pillow ANTIALIAS/Resampling issue.")
except Exception as e_mp: print(f"WARNING: ANTIALIAS patch error: {e_mp}")

from moviepy.editor import (ImageClip, VideoFileClip, concatenate_videoclips, TextClip,
                            CompositeVideoClip, AudioFileClip)
import moviepy.video.fx.all as vfx
import numpy as np
import os
import openai
import requests
import io
import time
import random
import logging

logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)

# --- SERVICE CLIENT IMPORTS (Keep as before) ---
ELEVENLABS_CLIENT_IMPORTED = False; ElevenLabsAPIClient = None; Voice = None; VoiceSettings = None
try:
    from elevenlabs.client import ElevenLabs as ImportedElevenLabsClient
    from elevenlabs import Voice as ImportedVoice, VoiceSettings as ImportedVoiceSettings
    ElevenLabsAPIClient = ImportedElevenLabsClient; Voice = ImportedVoice; VoiceSettings = ImportedVoiceSettings
    ELEVENLABS_CLIENT_IMPORTED = True; logger.info("ElevenLabs client components imported.")
except Exception as e_eleven: logger.warning(f"ElevenLabs client import failed: {e_eleven}. Audio disabled.")

RUNWAYML_SDK_IMPORTED = False; RunwayMLClient = None # Placeholder
try:
    # from runwayml import RunwayClient # Hypothetical actual import
    # RunwayMLClient = RunwayClient
    # RUNWAYML_SDK_IMPORTED = True
    logger.info("RunwayML SDK import is a placeholder.")
except ImportError: logger.warning("RunwayML SDK (placeholder) not found. RunwayML disabled.")
except Exception as e_runway_sdk: logger.warning(f"Error importing RunwayML SDK (placeholder): {e_runway_sdk}. RunwayML disabled.")


class VisualEngine:
    def __init__(self, output_dir="temp_cinegen_media", default_elevenlabs_voice_id="Rachel"):
        self.output_dir = output_dir
        os.makedirs(self.output_dir, exist_ok=True)
        self.font_filename = "DejaVuSans-Bold.ttf"
        font_paths_to_try = [ self.font_filename, "/usr/share/fonts/truetype/dejavu/DejaVuSans-Bold.ttf", "/usr/share/fonts/truetype/liberation/LiberationSans-Bold.ttf", "/System/Library/Fonts/Supplemental/Arial.ttf", "C:/Windows/Fonts/arial.ttf", f"/usr/local/share/fonts/truetype/mycustomfonts/arial.ttf"]
        self.font_path_pil = next((p for p in font_paths_to_try if os.path.exists(p)), None)
        self.font_size_pil = 20; self.video_overlay_font_size = 30; self.video_overlay_font_color = 'white'
        self.video_overlay_font = 'DejaVu-Sans-Bold'
        try:
            self.font = ImageFont.truetype(self.font_path_pil, self.font_size_pil) if self.font_path_pil else ImageFont.load_default()
            if self.font_path_pil: logger.info(f"Pillow font: {self.font_path_pil}.")
            else: logger.warning("Default Pillow font."); self.font_size_pil = 10
        except IOError as e_font: logger.error(f"Pillow font IOError: {e_font}. Default."); self.font = ImageFont.load_default(); self.font_size_pil = 10
        self.openai_api_key = None; self.USE_AI_IMAGE_GENERATION = False; self.dalle_model = "dall-e-3"; self.image_size_dalle3 = "1792x1024"
        self.video_frame_size = (1280, 720)
        self.elevenlabs_api_key = None; self.USE_ELEVENLABS = False; self.elevenlabs_client = None; self.elevenlabs_voice_id = default_elevenlabs_voice_id
        if VoiceSettings and ELEVENLABS_CLIENT_IMPORTED: self.elevenlabs_voice_settings = VoiceSettings(stability=0.60, similarity_boost=0.80, style=0.15, use_speaker_boost=True)
        else: self.elevenlabs_voice_settings = None
        self.pexels_api_key = None; self.USE_PEXELS = False
        self.runway_api_key = None; self.USE_RUNWAYML = False; self.runway_client = None # Placeholder client
        logger.info("VisualEngine initialized.")

    # --- API Key Setters (Keep as before) ---
    def set_openai_api_key(self,k): self.openai_api_key=k; self.USE_AI_IMAGE_GENERATION=bool(k); logger.info(f"DALL-E ({self.dalle_model}) {'Ready.' if k else 'Disabled.'}")
    def set_elevenlabs_api_key(self,api_key, voice_id_from_secret=None):
        self.elevenlabs_api_key=api_key
        if voice_id_from_secret: self.elevenlabs_voice_id = voice_id_from_secret
        if api_key and ELEVENLABS_CLIENT_IMPORTED and ElevenLabsAPIClient:
            try: self.elevenlabs_client = ElevenLabsAPIClient(api_key=api_key); self.USE_ELEVENLABS=bool(self.elevenlabs_client); logger.info(f"ElevenLabs Client {'Ready' if self.USE_ELEVENLABS else 'Failed Init'} (Voice ID: {self.elevenlabs_voice_id}).")
            except Exception as e: logger.error(f"ElevenLabs client init error: {e}. Disabled.", exc_info=True); self.USE_ELEVENLABS=False
        else: self.USE_ELEVENLABS=False; logger.info("ElevenLabs Disabled (no key or SDK).")
    def set_pexels_api_key(self,k): self.pexels_api_key=k; self.USE_PEXELS=bool(k); logger.info(f"Pexels Search {'Ready.' if k else 'Disabled.'}")
    def set_runway_api_key(self, k): # For RunwayML
        self.runway_api_key = k
        if k: # For Gen-4, we might not need an SDK client if using direct HTTP, or an SDK client might be initialized here
            # if RUNWAYML_SDK_IMPORTED and RunwayMLClient:
            #     try:
            #         # self.runway_client = RunwayMLClient(api_key=k) # Actual SDK client init
            #         self.USE_RUNWAYML = True; logger.info("RunwayML Client (Placeholder SDK) Ready.")
            #     except Exception as e: logger.error(f"RunwayML client init error: {e}", exc_info=True); self.USE_RUNWAYML = False
            # else: # No SDK, or direct HTTP calls are planned
            self.USE_RUNWAYML = True; logger.info("RunwayML API Key set. (SDK integration is placeholder).")
        else: self.USE_RUNWAYML = False; logger.info("RunwayML Disabled (no API key).")

    # --- Helper Methods _get_text_dimensions, _create_placeholder_image_content, _search_pexels_image (Keep as before) ---
    def _get_text_dimensions(self,tc,fo): di=fo.size if hasattr(fo,'size') else self.font_size_pil; return (0,di) if not tc else (lambda b:(b[2]-b[0],b[3]-b[1] if b[3]-b[1]>0 else di))(fo.getbbox(tc)) if hasattr(fo,'getbbox') else (lambda s:(s[0],s[1] if s[1]>0 else di))(fo.getsize(tc)) if hasattr(fo,'getsize') else (int(len(tc)*di*0.6),int(di*1.2))
    def _create_placeholder_image_content(self,td,fn,sz=None):
        if sz is None: sz = self.video_frame_size; img=Image.new('RGB',sz,color=(20,20,40));d=ImageDraw.Draw(img);pd=25;mw=sz[0]-(2*pd);ls=[];
        if not td: td="(Placeholder Image)"
        ws=td.split();cl=""
        for w in ws: tl=cl+w+" ";raw_w,_=self._get_text_dimensions(tl,self.font);w=raw_w if raw_w > 0 else len(tl)*(self.font_size_pil*0.6);
        if w<=mw:cl=tl;else:
            if cl:ls.append(cl.strip());cl=w+" "
        if cl.strip():ls.append(cl.strip())
        if not ls and td:ls.append(td[:int(mw//(self._get_text_dimensions("A",self.font)[0]or 10))]+"..." if td else "(Text too long)");elif not ls:ls.append("(Placeholder Error)")
        _,slh=self._get_text_dimensions("Ay",self.font);slh=slh if slh>0 else self.font_size_pil+2;mld=min(len(ls),(sz[1]-(2*pd))//(slh+2)) if slh>0 else 1;
        if mld<=0:mld=1;yts=pd+(sz[1]-(2*pd)-mld*(slh+2))/2.0;yt=yts
        for i in range(mld):lc=ls[i];lw,_=self._get_text_dimensions(lc,self.font);xt=(sz[0]-lw)/2.0;d.text((xt,yt),lc,font=self.font,fill=(200,200,180));yt+=slh+2
        if i==6 and mld>7:d.text((xt,yt),"...",font=self.font,fill=(200,200,180));break
        fp=os.path.join(self.output_dir,fn);
        try:img.save(fp);return fp
        except Exception as e:logger.error(f"Save placeholder img {fp}: {e}",exc_info=True);return None
    def _search_pexels_image(self, q, ofnb):
        if not self.USE_PEXELS or not self.pexels_api_key: return None; h={"Authorization":self.pexels_api_key};p={"query":q,"per_page":1,"orientation":"landscape","size":"large2x"}
        pfn=ofnb.replace(".png",f"_pexels_{random.randint(1000,9999)}.jpg").replace(".mp4",f"_pexels_{random.randint(1000,9999)}.jpg");fp=os.path.join(self.output_dir,pfn)
        try: logger.info(f"Pexels search: '{q}'");eq=" ".join(q.split()[:5]);p["query"]=eq;r=requests.get("https://api.pexels.com/v1/search",headers=h,params=p,timeout=20)
        r.raise_for_status();d=r.json()
        if d.get("photos") and len(d["photos"])>0:pu=d["photos"][0]["src"]["large2x"];ir=requests.get(pu,timeout=60);ir.raise_for_status();id=Image.open(io.BytesIO(ir.content))
        if id.mode!='RGB':id=id.convert('RGB');id.save(fp);logger.info(f"Pexels saved: {fp}");return fp
        else: logger.info(f"No Pexels for: '{eq}'")
        except Exception as e:logger.error(f"Pexels error ('{q}'): {e}",exc_info=True);return None

    # --- RunwayML Video Generation (Gen-4 Aligned Placeholder) ---
    def _generate_video_clip_with_runwayml(self, text_prompt_for_motion, input_image_path, scene_identifier_filename_base, target_duration_seconds=5):
        """
        Placeholder for Runway Gen-4. Requires an input image and a text prompt for motion.
        target_duration_seconds should ideally be 5 or 10 for Gen-4.
        """
        if not self.USE_RUNWAYML or not self.runway_api_key:
            logger.warning("RunwayML not enabled/API key missing. Cannot generate video clip.")
            return None
        if not input_image_path or not os.path.exists(input_image_path):
            logger.error(f"Runway Gen-4 requires an input image. Path not provided or invalid: {input_image_path}")
            return None

        # Gen-4 produces 5s or 10s. We can aim for the closest or let user choose via app.py if more control is needed.
        # For simplicity, let's assume target_duration_seconds from Gemini/user is a suggestion.
        # Actual API call would specify duration if supported, or model has fixed outputs.
        runway_duration_param = 10 if target_duration_seconds > 7 else 5 # Example logic to map to 5s or 10s

        output_video_filename = scene_identifier_filename_base.replace(".png", f"_runway_gen4_d{runway_duration_param}s.mp4")
        output_video_filepath = os.path.join(self.output_dir, output_video_filename)

        logger.info(f"Attempting Runway Gen-4 (Placeholder) with image: {os.path.basename(input_image_path)}, motion prompt: '{text_prompt_for_motion[:100]}...', target duration: {runway_duration_param}s")

        # --- ACTUAL RUNWAY GEN-4 API/SDK CALL WOULD GO HERE ---
        # This would involve:
        # 1. Uploading input_image_path (if API requires it, or providing a URL).
        # 2. Submitting the job with text_prompt_for_motion and desired parameters (duration, seed, etc.).
        # 3. Polling for completion.
        # 4. Downloading the resulting video to output_video_filepath.
        # Example (very hypothetical SDK structure):
        # try:
        #     if not self.runway_client: self.runway_client = RunwayMLClient(api_key=self.runway_api_key)
        #     runway_task = self.runway_client.gen4.generate(
        #         image_path=input_image_path,
        #         text_prompt=text_prompt_for_motion,
        #         duration_seconds=runway_duration_param, # Or let model default
        #         # ... other Gen-4 parameters like seed, motion_score, upscale, etc.
        #     )
        #     runway_task.wait_for_completion() # Blocks until done
        #     if runway_task.status == 'succeeded':
        #         runway_task.download_video(output_video_filepath)
        #         logger.info(f"Runway Gen-4 video saved to: {output_video_filepath}")
        #         return output_video_filepath
        #     else:
        #         logger.error(f"Runway Gen-4 task failed. Status: {runway_task.status}, Error: {runway_task.error_message}")
        #         return None
        # except Exception as e_runway:
        #     logger.error(f"Error during actual Runway Gen-4 call: {e_runway}", exc_info=True)
        #     return None
        # --- END ACTUAL RUNWAY GEN-4 API/SDK CALL ---

        logger.warning("Using PLACEHOLDER video generation for Runway Gen-4.")
        # Create a dummy video using the input image as a static frame for the placeholder
        try:
            img_clip = ImageClip(input_image_path).set_duration(runway_duration_param)
            # Add a text overlay to indicate it's a placeholder
            txt = f"Runway Gen-4 Placeholder\nInput: {os.path.basename(input_image_path)}\nMotion: {text_prompt_for_motion[:50]}..."
            txt_clip = TextClip(txt, fontsize=24, color='white', font=self.video_overlay_font,
                                bg_color='rgba(0,0,0,0.5)', size=(self.video_frame_size[0]*0.8, None),
                                method='caption').set_duration(runway_duration_param).set_position('center')
            final_placeholder_clip = CompositeVideoClip([img_clip, txt_clip], size=img_clip.size)
            final_placeholder_clip.write_videofile(output_video_filepath, fps=fps, codec='libx264', preset='ultrafast', logger=None, threads=2)
            logger.info(f"Runway Gen-4 placeholder video saved: {output_video_filepath}")
            if hasattr(img_clip, 'close'): img_clip.close()
            if hasattr(txt_clip, 'close'): txt_clip.close()
            if hasattr(final_placeholder_clip, 'close'): final_placeholder_clip.close()
            return output_video_filepath
        except Exception as e_placeholder:
            logger.error(f"Failed to create Runway Gen-4 placeholder video: {e_placeholder}", exc_info=True)
            return None

    def _create_placeholder_video_content(self, text_description, filename, duration=4, size=None): # Generic placeholder if input_image not available
        # ... (Keep as before, used if Runway is selected but input image gen fails) ...
        if size is None: size = self.video_frame_size; fp = os.path.join(self.output_dir, filename); tc = None
        try:
            tc = TextClip(text_description, fontsize=50, color='white', font=self.video_overlay_font, bg_color='black', size=size, method='caption').set_duration(duration)
            tc.write_videofile(fp, fps=24, codec='libx264', preset='ultrafast', logger=None, threads=2)
            logger.info(f"Generic placeholder video: {fp}"); return fp
        except Exception as e: logger.error(f"Generic placeholder video error {fp}: {e}", exc_info=True); return None
        finally:
            if tc and hasattr(tc, 'close'): tc.close()

    # --- generate_scene_asset (Updated for Gen-4 Workflow) ---
    def generate_scene_asset(self, image_generation_prompt_text, # For DALL-E / Pexels
                             motion_prompt_text_for_video,      # For Runway Gen-4 (motion only)
                             scene_data, scene_identifier_filename_base,
                             generate_as_video_clip=False, runway_target_duration=5):
        base_name, _ = os.path.splitext(scene_identifier_filename_base)
        asset_info = {'path': None, 'type': 'none', 'error': True, 'prompt_used': image_generation_prompt_text, 'error_message': 'Generation not attempted'}

        # STEP 1: Generate the input image (DALL-E/Pexels/Placeholder) regardless of final asset type if video is chosen.
        # This image will serve as the base for Runway Gen-4 if generate_as_video_clip is True.
        input_image_for_runway_path = None
        image_filename_with_ext = base_name + "_base_image.png" # Differentiate base image filename
        image_filepath = os.path.join(self.output_dir, image_filename_with_ext)
        temp_image_asset_info = {'error': True, 'prompt_used': image_generation_prompt_text, 'error_message': 'Base image generation not attempted'}

        if self.USE_AI_IMAGE_GENERATION and self.openai_api_key:
            max_r, att_n = 2, 0
            for att_n in range(max_r):
                try:
                    logger.info(f"Attempt {att_n+1} DALL-E (for base image): {image_generation_prompt_text[:100]}...")
                    cl = openai.OpenAI(api_key=self.openai_api_key, timeout=90.0)
                    r = cl.images.generate(model=self.dalle_model, prompt=image_generation_prompt_text, n=1, size=self.image_size_dalle3, quality="hd", response_format="url", style="vivid")
                    iu = r.data[0].url; rp = getattr(r.data[0], 'revised_prompt', None)
                    if rp: logger.info(f"DALL-E revised: {rp[:100]}...")
                    ir = requests.get(iu, timeout=120); ir.raise_for_status()
                    id_img = Image.open(io.BytesIO(ir.content)) # Renamed to avoid conflict
                    if id_img.mode != 'RGB': id_img = id_img.convert('RGB')
                    id_img.save(image_filepath); logger.info(f"DALL-E base image saved: {image_filepath}");
                    input_image_for_runway_path = image_filepath
                    temp_image_asset_info = {'path': image_filepath, 'type': 'image', 'error': False, 'prompt_used': image_generation_prompt_text, 'revised_prompt': rp}
                    break # Success
                except openai.RateLimitError as e: logger.warning(f"OpenAI Rate Limit {att_n+1}: {e}. Retry..."); time.sleep(5*(att_n+1)); temp_image_asset_info['error_message']=str(e)
                except Exception as e: logger.error(f"DALL-E error: {e}", exc_info=True); temp_image_asset_info['error_message']=str(e); break
            if temp_image_asset_info['error']: logger.warning(f"DALL-E failed after {att_n+1} attempts for base image.")
        
        if temp_image_asset_info['error'] and self.USE_PEXELS : # Try Pexels if DALL-E failed
            pqt = scene_data.get('pexels_search_query_๊ฐ๋…', f"{scene_data.get('emotional_beat','')} {scene_data.get('setting_description','')}")
            pp = self._search_pexels_image(pqt, image_filename_with_ext) # Pass base image filename
            if pp: input_image_for_runway_path = pp; temp_image_asset_info = {'path': pp, 'type': 'image', 'error': False, 'prompt_used': f"Pexels: {pqt}"}
            else: current_em = temp_image_asset_info.get('error_message',""); temp_image_asset_info['error_message']=(current_em + " Pexels failed.").strip()

        if temp_image_asset_info['error']: # Fallback to placeholder for base image
            logger.warning("Base image generation (DALL-E/Pexels) failed. Using placeholder for base image.")
            ppt = temp_image_asset_info.get('prompt_used', image_generation_prompt_text)
            php = self._create_placeholder_image_content(f"[Base Img Placeholder] {ppt[:100]}...", image_filename_with_ext)
            if php: input_image_for_runway_path = php; temp_image_asset_info = {'path': php, 'type': 'image', 'error': False, 'prompt_used': ppt}
            else: current_em=temp_image_asset_info.get('error_message',"");temp_image_asset_info['error_message']=(current_em + " Base placeholder failed.").strip()
        
        # STEP 2: If video clip is requested and base image was successfully created, generate video with RunwayML
        if generate_as_video_clip:
            if self.USE_RUNWAYML and input_image_for_runway_path:
                logger.info(f"Proceeding to Runway Gen-4 video clip generation for {base_name} using base image: {input_image_for_runway_path}")
                video_path = self._generate_video_clip_with_runwayml(
                    text_prompt_for_motion=motion_prompt_text_for_video, # Use the motion-specific prompt
                    input_image_path=input_image_for_runway_path,
                    scene_identifier_filename_base=base_name, # Will append _runway_gen4.mp4
                    target_duration_seconds=runway_target_duration
                )
                if video_path and os.path.exists(video_path):
                    asset_info = {'path': video_path, 'type': 'video', 'error': False, 'prompt_used': motion_prompt_text_for_video, 'base_image_path': input_image_for_runway_path}
                    return asset_info # Successfully generated video
                else:
                    logger.warning(f"RunwayML video clip generation failed for {base_name}. Using the base image as fallback.")
                    asset_info = temp_image_asset_info # Fallback to the base image
                    asset_info['error'] = True # Indicate video step failed, though base image might be okay
                    asset_info['error_message'] = "RunwayML video generation step failed; using base image."
                    asset_info['type'] = 'image' # Explicitly set to image as it's the fallback
                    return asset_info
            elif not self.USE_RUNWAYML:
                logger.warning("RunwayML selected but not enabled/configured. Using base image.")
                asset_info = temp_image_asset_info
                asset_info['error_message'] = "RunwayML disabled; using base image."
                asset_info['type'] = 'image'
                return asset_info
            else: # No input_image_for_runway_path
                logger.error("Cannot generate RunwayML video: base image generation failed entirely.")
                asset_info = temp_image_asset_info # This will have error=True
                asset_info['error_message'] = (asset_info.get('error_message',"") + " Base image failed, so Runway video not attempted.").strip()
                asset_info['type'] = 'image' # Even though it failed, its type was image
                return asset_info
        else: # Image was requested directly
            asset_info = temp_image_asset_info # Return the result of the base image generation
            return asset_info

    # --- generate_narration_audio (Keep as before) ---
    def generate_narration_audio(self, text_to_narrate, output_filename="narration_overall.mp3"):
        if not self.USE_ELEVENLABS or not self.elevenlabs_client or not text_to_narrate: logger.info("11L skip."); return None; afp=os.path.join(self.output_dir,output_filename)
        try: logger.info(f"11L audio (Voice:{self.elevenlabs_voice_id}): {text_to_narrate[:70]}..."); asm=None
        if hasattr(self.elevenlabs_client,'text_to_speech')and hasattr(self.elevenlabs_client.text_to_speech,'stream'):asm=self.elevenlabs_client.text_to_speech.stream;logger.info("11L .text_to_speech.stream()")
        elif hasattr(self.elevenlabs_client,'generate_stream'):asm=self.elevenlabs_client.generate_stream;logger.info("11L .generate_stream()")
        elif hasattr(self.elevenlabs_client,'generate'):logger.info("11L .generate()");vp=Voice(voice_id=str(self.elevenlabs_voice_id),settings=self.elevenlabs_voice_settings)if Voice and self.elevenlabs_voice_settings else str(self.elevenlabs_voice_id);ab=self.elevenlabs_client.generate(text=text_to_narrate,voice=vp,model="eleven_multilingual_v2");
        with open(afp,"wb")as f:f.write(ab);logger.info(f"11L audio (non-stream): {afp}");return afp
        else:logger.error("No 11L audio method.");return None
        if asm:vps={"voice_id":str(self.elevenlabs_voice_id)}
        if self.elevenlabs_voice_settings:
            if hasattr(self.elevenlabs_voice_settings,'model_dump'):vps["voice_settings"]=self.elevenlabs_voice_settings.model_dump()
            elif hasattr(self.elevenlabs_voice_settings,'dict'):vps["voice_settings"]=self.elevenlabs_voice_settings.dict()
            else:vps["voice_settings"]=self.elevenlabs_voice_settings
        adi=asm(text=text_to_narrate,model_id="eleven_multilingual_v2",**vps)
        with open(afp,"wb")as f:
            for c in adi:
                if c:f.write(c)
        logger.info(f"11L audio (stream): {afp}");return afp
        except Exception as e:logger.error(f"11L audio error: {e}",exc_info=True);return None

    # --- assemble_animatic_from_assets (Keep robust version from previous step, ensuring C-contiguous array and debug saves) ---
    def assemble_animatic_from_assets(self, asset_data_list, overall_narration_path=None, output_filename="final_video.mp4", fps=24):
        if not asset_data_list: logger.warning("No assets for animatic."); return None
        processed_clips = []; narration_clip = None; final_clip = None
        logger.info(f"Assembling from {len(asset_data_list)} assets. Frame: {self.video_frame_size}.")

        for i, asset_info in enumerate(asset_data_list):
            asset_path, asset_type, scene_dur = asset_info.get('path'), asset_info.get('type'), asset_info.get('duration', 4.5)
            scene_num, key_action = asset_info.get('scene_num', i + 1), asset_info.get('key_action', '')
            logger.info(f"S{scene_num}: Path='{asset_path}', Type='{asset_type}', Dur='{scene_dur}'s")

            if not (asset_path and os.path.exists(asset_path)): logger.warning(f"S{scene_num}: Not found '{asset_path}'. Skip."); continue
            if scene_dur <= 0: logger.warning(f"S{scene_num}: Invalid duration ({scene_dur}s). Skip."); continue

            current_scene_mvpy_clip = None
            try:
                if asset_type == 'image':
                    pil_img = Image.open(asset_path); logger.debug(f"S{scene_num}: Loaded img. Mode:{pil_img.mode}, Size:{pil_img.size}")
                    img_rgba = pil_img.convert('RGBA') if pil_img.mode != 'RGBA' else pil_img.copy()
                    thumb = img_rgba.copy(); rf = Image.Resampling.LANCZOS if hasattr(Image.Resampling,'LANCZOS') else Image.BILINEAR; thumb.thumbnail(self.video_frame_size,rf)
                    cv_rgba = Image.new('RGBA',self.video_frame_size,(0,0,0,0)); xo,yo=(self.video_frame_size[0]-thumb.width)//2,(self.video_frame_size[1]-thumb.height)//2
                    cv_rgba.paste(thumb,(xo,yo),thumb)
                    final_rgb_pil = Image.new("RGB",self.video_frame_size,(0,0,0)); final_rgb_pil.paste(cv_rgba,mask=cv_rgba.split()[3])
                    
                    # CRITICAL DEBUG: Save image fed to NumPy array
                    dbg_path = os.path.join(self.output_dir,f"debug_PRE_NUMPY_S{scene_num}.png"); final_rgb_pil.save(dbg_path); logger.info(f"DEBUG: Saved PRE_NUMPY_S{scene_num} to {dbg_path}")

                    frame_np = np.array(final_rgb_pil,dtype=np.uint8);
                    if not frame_np.flags['C_CONTIGUOUS']: frame_np=np.ascontiguousarray(frame_np,dtype=np.uint8)
                    logger.debug(f"S{scene_num}: NumPy for MoviePy. Shape:{frame_np.shape}, DType:{frame_np.dtype}, C-Contig:{frame_np.flags['C_CONTIGUOUS']}")
                    if frame_np.size==0 or frame_np.ndim!=3 or frame_np.shape[2]!=3: logger.error(f"S{scene_num}: Invalid NumPy. Skip."); continue
                    
                    clip_base = ImageClip(frame_np,transparent=False).set_duration(scene_dur)
                    # CRITICAL DEBUG: Save frame from MoviePy clip
                    mvpy_dbg_path=os.path.join(self.output_dir,f"debug_MOVIEPY_FRAME_S{scene_num}.png"); clip_base.save_frame(mvpy_dbg_path,t=0.1); logger.info(f"DEBUG: Saved MOVIEPY_FRAME_S{scene_num} to {mvpy_dbg_path}")
                    
                    clip_fx = clip_base
                    try: es=random.uniform(1.03,1.08); clip_fx=clip_base.fx(vfx.resize,lambda t:1+(es-1)*(t/scene_dur) if scene_dur>0 else 1).set_position('center')
                    except Exception as e: logger.error(f"S{scene_num} Ken Burns error: {e}",exc_info=False)
                    current_scene_mvpy_clip = clip_fx

                elif asset_type == 'video':
                    src_clip=None
                    try:
                        src_clip=VideoFileClip(asset_path,target_resolution=(self.video_frame_size[1],self.video_frame_size[0])if self.video_frame_size else None)
                        tmp_clip=src_clip
                        if src_clip.duration!=scene_dur:
                            if src_clip.duration>scene_dur:tmp_clip=src_clip.subclip(0,scene_dur)
                            else:
                                if scene_dur/src_clip.duration > 1.5 and src_clip.duration>0.1:tmp_clip=src_clip.loop(duration=scene_dur)
                                else:tmp_clip=src_clip.set_duration(src_clip.duration);logger.info(f"S{scene_num} Video clip ({src_clip.duration:.2f}s) shorter than target ({scene_dur:.2f}s).")
                        current_scene_mvpy_clip=tmp_clip.set_duration(scene_dur)
                        if current_scene_mvpy_clip.size!=list(self.video_frame_size):current_scene_mvpy_clip=current_scene_mvpy_clip.resize(self.video_frame_size)
                    except Exception as e:logger.error(f"S{scene_num} Video load error '{asset_path}':{e}",exc_info=True);continue
                    finally:
                        if src_clip and src_clip is not current_scene_mvpy_clip and hasattr(src_clip,'close'):src_clip.close()
                else: logger.warning(f"S{scene_num} Unknown asset type '{asset_type}'. Skip."); continue
                
                if current_scene_mvpy_clip and key_action:
                    try:
                        to_dur=min(current_scene_mvpy_clip.duration-0.5,current_scene_mvpy_clip.duration*0.8)if current_scene_mvpy_clip.duration>0.5 else current_scene_mvpy_clip.duration
                        to_start=0.25 # (current_scene_mvpy_clip.duration-to_dur)/2.0
                        txt_c=TextClip(f"Scene {scene_num}\n{key_action}",fontsize=self.video_overlay_font_size,color=self.video_overlay_font_color,font=self.video_overlay_font,bg_color='rgba(10,10,20,0.7)',method='caption',align='West',size=(self.video_frame_size[0]*0.9,None),kerning=-1,stroke_color='black',stroke_width=1.5).set_duration(to_dur).set_start(to_start).set_position(('center',0.92),relative=True)
                        current_scene_mvpy_clip=CompositeVideoClip([current_scene_mvpy_clip,txt_c],size=self.video_frame_size,use_bgclip=True)
                    except Exception as e:logger.error(f"S{scene_num} TextClip error:{e}. No text.",exc_info=True)
                if current_scene_mvpy_clip:processed_clips.append(current_scene_mvpy_clip);logger.info(f"S{scene_num} Processed. Dur:{current_scene_mvpy_clip.duration:.2f}s.")
            except Exception as e:logger.error(f"MAJOR Error S{scene_num} ({asset_path}):{e}",exc_info=True)
            finally:
                if current_scene_mvpy_clip and hasattr(current_scene_mvpy_clip,'close'):
                    try: current_scene_mvpy_clip.close() # This might close the clip if it's a VideoFileClip directly
                    except: pass # Avoid error during cleanup

        if not processed_clips:logger.warning("No clips processed. Abort.");return None
        td=0.75
        try:
            logger.info(f"Concatenating {len(processed_clips)} clips.");
            if len(processed_clips)>1:final_clip=concatenate_videoclips(processed_clips,padding=-td if td>0 else 0,method="compose")
            elif processed_clips:final_clip=processed_clips[0]
            if not final_clip:logger.error("Concatenation failed.");return None
            logger.info(f"Concatenated dur:{final_clip.duration:.2f}s")
            if td>0 and final_clip.duration>0:
                if final_clip.duration>td*2:final_clip=final_clip.fx(vfx.fadein,td).fx(vfx.fadeout,td)
                else:final_clip=final_clip.fx(vfx.fadein,min(td,final_clip.duration/2.0))
            if overall_narration_path and os.path.exists(overall_narration_path) and final_clip.duration>0:
                try:narration_clip=AudioFileClip(overall_narration_path);final_clip=final_clip.set_audio(narration_clip);logger.info("Narration added.")
                except Exception as e:logger.error(f"Narration add error:{e}",exc_info=True)
            elif final_clip.duration<=0:logger.warning("Video no duration. No audio.")
            if final_clip and final_clip.duration>0:
                op=os.path.join(self.output_dir,output_filename);logger.info(f"Writing video:{op} (Dur:{final_clip.duration:.2f}s)")
                final_clip.write_videofile(op,fps=fps,codec='libx264',preset='medium',audio_codec='aac',temp_audiofile=os.path.join(self.output_dir,f'temp-audio-{os.urandom(4).hex()}.m4a'),remove_temp=True,threads=os.cpu_count()or 2,logger='bar',bitrate="5000k",ffmpeg_params=["-pix_fmt", "yuv420p"]) # Added pix_fmt
                logger.info(f"Video created:{op}");return op
            else:logger.error("Final clip invalid. No write.");return None
        except Exception as e:logger.error(f"Video write error:{e}",exc_info=True);return None
        finally:
            logger.debug("Closing all MoviePy clips in `assemble_animatic_from_assets` finally block.")
            # Close clips individually to catch errors without stopping others
            for clip_obj in processed_clips:
                if clip_obj and hasattr(clip_obj, 'close'):
                    try: clip_obj.close()
                    except Exception as e_close: logger.warning(f"Ignoring error closing a processed clip: {e_close}")
            if narration_clip and hasattr(narration_clip, 'close'):
                try: narration_clip.close()
                except Exception as e_close_audio: logger.warning(f"Ignoring error closing narration clip: {e_close_audio}")
            if final_clip and hasattr(final_clip, 'close'): # final_composite_clip_obj was renamed to final_clip
                try: final_clip.close()
                except Exception as e_close_final: logger.warning(f"Ignoring error closing final composite clip: {e_close_final}")