|
import gradio as gr |
|
from huggingface_hub import InferenceClient |
|
|
|
|
|
client = InferenceClient() |
|
|
|
|
|
def generate_stream(selected_topic, subtopic, input_text, examples_count): |
|
""" |
|
Generates dynamic lessons, solutions, or code snippets based on the selected topic. |
|
|
|
Args: |
|
selected_topic (str): The selected subject (e.g., Math, STEM, or Code Generation). |
|
subtopic (str): Specific subtopic or category for more focused output. |
|
input_text (str): Additional input for contextual content generation. |
|
examples_count (int): Number of examples to generate. |
|
|
|
Yields: |
|
str: Incremental output content. |
|
""" |
|
|
|
prompt = ( |
|
f"Generate {examples_count} detailed {selected_topic.lower()} examples, lessons, or problems " |
|
f"focused on {subtopic}. Input context: {input_text}" |
|
if input_text.strip() else |
|
f"Generate {examples_count} beginner-level {selected_topic.lower()} lessons or examples on {subtopic}." |
|
) |
|
messages = [{"role": "user", "content": prompt}] |
|
|
|
try: |
|
|
|
stream = client.chat.completions.create( |
|
model="Qwen/Qwen2.5-Coder-32B-Instruct", |
|
messages=messages, |
|
temperature=0.5, |
|
max_tokens=1024, |
|
top_p=0.7, |
|
stream=True |
|
) |
|
|
|
|
|
generated_content = "" |
|
for chunk in stream: |
|
generated_content += chunk.choices[0].delta.content |
|
yield generated_content |
|
except Exception as e: |
|
yield f"Error: {e}" |
|
|
|
|
|
with gr.Blocks() as app: |
|
|
|
gr.Markdown("## π Enhanced STEM Learning and Code Generator") |
|
gr.Markdown( |
|
"Generate tailored lessons, problem-solving examples, or code snippets for Math, STEM, " |
|
"or Computer Science. Select a topic, subtopic, and customize your experience!" |
|
) |
|
|
|
with gr.Row(): |
|
|
|
with gr.Column(): |
|
selected_topic = gr.Radio( |
|
choices=["Math", "STEM", "Computer Science (Code Generation)"], |
|
label="Select a Topic", |
|
value="Math" |
|
) |
|
subtopic = gr.Textbox( |
|
lines=1, |
|
label="Subtopic", |
|
placeholder="Specify a subtopic (e.g., Algebra, Physics, Data Structures)." |
|
) |
|
input_text = gr.Textbox( |
|
lines=2, |
|
label="Context or Additional Input", |
|
placeholder="Provide additional context (e.g., 'Explain calculus basics' or 'Generate Python code for sorting')." |
|
) |
|
examples_count = gr.Slider( |
|
minimum=1, |
|
maximum=5, |
|
value=1, |
|
step=1, |
|
label="Number of Examples" |
|
) |
|
generate_button = gr.Button("Generate Content") |
|
|
|
|
|
with gr.Column(): |
|
gr.Markdown("### Generated Content") |
|
output_stream = gr.Textbox( |
|
lines=20, |
|
label="Output", |
|
interactive=False |
|
) |
|
export_button = gr.Button("Export Code (if applicable)") |
|
|
|
|
|
generate_button.click( |
|
fn=generate_stream, |
|
inputs=[selected_topic, subtopic, input_text, examples_count], |
|
outputs=output_stream |
|
) |
|
|
|
|
|
def export_code(content): |
|
with open("generated_code.py", "w") as file: |
|
file.write(content) |
|
return "Code exported successfully to generated_code.py!" |
|
|
|
export_button.click( |
|
fn=export_code, |
|
inputs=[output_stream], |
|
outputs=[output_stream] |
|
) |
|
|
|
|
|
app.launch() |
|
|