Spaces:
Sleeping
Sleeping
# app.py | |
# -*- coding: utf-8 -*- | |
# | |
# PROJECT: CognitiveEDA v5.4 - The QuantumLeap Intelligence Platform | |
# | |
# DESCRIPTION: Main application entry point. This definitive version combines UI | |
# layout and callback registration within a single, robust script | |
# to align with Gradio's context-based API design, resolving all | |
# previous startup errors. | |
# | |
# SETUP: $ pip install -r requirements.txt | |
# | |
# AUTHOR: An MCP & PhD Expert in Data & AI Solutions | |
# VERSION: 5.4 (Definitive Context-Aware Edition) | |
# LAST-UPDATE: 2023-10-30 (Final architectural correction) | |
import warnings | |
import logging | |
import gradio as gr | |
# The callback LOGIC is still neatly separated | |
from ui import callbacks | |
from core.config import settings | |
# --- Configuration & Setup --- | |
logging.basicConfig( | |
level=logging.INFO, | |
format='%(asctime)s - [%(levelname)s] - (%(filename)s:%(lineno)d) - %(message)s' | |
) | |
warnings.filterwarnings('ignore', category=FutureWarning) | |
def main(): | |
""" | |
Primary function to build, wire up, and launch the Gradio application. | |
""" | |
logging.info(f"Starting {settings.APP_TITLE}") | |
# The 'with' block creates the Gradio context. All UI and events will be defined here. | |
with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue", secondary_hue="indigo"), title=settings.APP_TITLE) as demo: | |
# ====================================================================== | |
# 1. DEFINE THE UI LAYOUT DIRECTLY WITHIN THE MAIN SCRIPT | |
# This is the most robust pattern and resolves all context-related errors. | |
# ====================================================================== | |
# State object to hold the DataAnalyzer instance | |
state_analyzer = gr.State() | |
# --- Header --- | |
gr.Markdown(f"<h1>{settings.APP_TITLE}</h1>") | |
gr.Markdown("A world-class data discovery platform that provides a complete suite of EDA tools and intelligently unlocks specialized analysis modules.") | |
# --- Input Row --- | |
with gr.Row(): | |
upload_button = gr.File(label="1. Upload Data File (CSV, Excel)", file_types=[".csv", ".xlsx"], scale=3) | |
analyze_button = gr.Button("β¨ Generate Intelligence Report", variant="primary", scale=1) | |
# --- Main Tabs --- | |
with gr.Tabs(): | |
with gr.Tab("π€ AI-Powered Strategy Report", id="tab_ai"): | |
ai_report_output = gr.Markdown("### Your AI-generated report will appear here after analysis...") | |
with gr.Tab("π Data Profile", id="tab_profile"): | |
with gr.Accordion("Missing Values Report", open=False): | |
profile_missing_df = gr.DataFrame() | |
with gr.Accordion("Numeric Features Summary", open=True): | |
profile_numeric_df = gr.DataFrame() | |
with gr.Accordion("Categorical Features Summary", open=True): | |
profile_categorical_df = gr.DataFrame() | |
with gr.Tab("π Overview Visuals", id="tab_overview"): | |
with gr.Row(): | |
plot_types = gr.Plot() | |
plot_missing = gr.Plot() | |
plot_correlation = gr.Plot() | |
with gr.Tab("π¨ Interactive Explorer", id="tab_explorer"): | |
gr.Markdown("### Univariate Analysis") | |
with gr.Row(): | |
dd_hist_col = gr.Dropdown(label="Select Column for Histogram", interactive=True) | |
plot_histogram = gr.Plot() | |
gr.Markdown("### Bivariate Analysis") | |
with gr.Row(): | |
with gr.Column(scale=1): | |
dd_scatter_x = gr.Dropdown(label="X-Axis (Numeric)", interactive=True) | |
dd_scatter_y = gr.Dropdown(label="Y-Axis (Numeric)", interactive=True) | |
dd_scatter_color = gr.Dropdown(label="Color By (Optional)", interactive=True) | |
with gr.Column(scale=2): | |
plot_scatter = gr.Plot() | |
with gr.Tab("π§© Clustering (K-Means)", id="tab_cluster", visible=False) as tab_cluster: | |
with gr.Row(): | |
with gr.Column(scale=1): | |
num_clusters = gr.Slider(minimum=2, maximum=10, value=3, step=1, label="Number of Clusters (K)", interactive=True) | |
md_cluster_summary = gr.Markdown() | |
with gr.Column(scale=2): | |
plot_cluster = gr.Plot() | |
plot_elbow = gr.Plot() | |
tab_timeseries = gr.Tab("β Time-Series Analysis", id="tab_timeseries", visible=False) | |
tab_text = gr.Tab("π Text Analysis", id="tab_text", visible=False) | |
# --- Collect all components into a dictionary for easy access --- | |
components = { | |
"state_analyzer": state_analyzer, "upload_button": upload_button, "analyze_button": analyze_button, | |
"ai_report_output": ai_report_output, "profile_missing_df": profile_missing_df, | |
"profile_numeric_df": profile_numeric_df, "profile_categorical_df": profile_categorical_df, | |
"plot_types": plot_types, "plot_missing": plot_missing, "plot_correlation": plot_correlation, | |
"dd_hist_col": dd_hist_col, "plot_histogram": plot_histogram, "dd_scatter_x": dd_scatter_x, | |
"dd_scatter_y": dd_scatter_y, "dd_scatter_color": dd_scatter_color, "plot_scatter": plot_scatter, | |
"tab_timeseries": tab_timeseries, "tab_text": tab_text, "tab_cluster": tab_cluster, | |
"num_clusters": num_clusters, "md_cluster_summary": md_cluster_summary, | |
"plot_cluster": plot_cluster, "plot_elbow": plot_elbow, | |
} | |
# ====================================================================== | |
# 2. REGISTER EVENT HANDLERS | |
# Now that components is a guaranteed dictionary, this will work. | |
# ====================================================================== | |
# --- Primary Analysis Chain --- | |
analysis_complete_event = components["analyze_button"].click( | |
fn=callbacks.run_initial_analysis, | |
inputs=[components["upload_button"]], | |
outputs=[components["state_analyzer"]] | |
) | |
analysis_complete_event.then( | |
fn=callbacks.generate_reports_and_visuals, | |
inputs=[components["state_analyzer"]], | |
outputs=components | |
) | |
# --- Interactive Explorer Callbacks --- | |
components["dd_hist_col"].change( | |
fn=callbacks.create_histogram, | |
inputs=[components["state_analyzer"], components["dd_hist_col"]], | |
outputs=[components["plot_histogram"]] | |
) | |
scatter_inputs = [ | |
components["state_analyzer"], components["dd_scatter_x"], | |
components["dd_scatter_y"], components["dd_scatter_color"] | |
] | |
for dropdown in [components["dd_scatter_x"], components["dd_scatter_y"], components["dd_scatter_color"]]: | |
dropdown.change( | |
fn=callbacks.create_scatterplot, inputs=scatter_inputs, outputs=[components["plot_scatter"]] | |
) | |
# --- Specialized Module Callbacks --- | |
components["num_clusters"].change( | |
fn=callbacks.update_clustering, | |
inputs=[components["state_analyzer"], components["num_clusters"]], | |
outputs=[components["plot_cluster"], components["plot_elbow"], components["md_cluster_summary"]] | |
) | |
# 3. Launch the application server | |
demo.launch(debug=False, server_name="0.0.0.0") | |
# --- Application Entry Point --- | |
if __name__ == "__main__": | |
main() |