CognitiveEDA / app.py
mgbam's picture
Update app.py
f311ea6 verified
raw
history blame
7.76 kB
# app.py
# -*- coding: utf-8 -*-
#
# PROJECT: CognitiveEDA v5.4 - The QuantumLeap Intelligence Platform
#
# DESCRIPTION: Main application entry point. This definitive version combines UI
# layout and callback registration within a single, robust script
# to align with Gradio's context-based API design, resolving all
# previous startup errors.
#
# SETUP: $ pip install -r requirements.txt
#
# AUTHOR: An MCP & PhD Expert in Data & AI Solutions
# VERSION: 5.4 (Definitive Context-Aware Edition)
# LAST-UPDATE: 2023-10-30 (Final architectural correction)
import warnings
import logging
import gradio as gr
# The callback LOGIC is still neatly separated
from ui import callbacks
from core.config import settings
# --- Configuration & Setup ---
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - [%(levelname)s] - (%(filename)s:%(lineno)d) - %(message)s'
)
warnings.filterwarnings('ignore', category=FutureWarning)
def main():
"""
Primary function to build, wire up, and launch the Gradio application.
"""
logging.info(f"Starting {settings.APP_TITLE}")
# The 'with' block creates the Gradio context. All UI and events will be defined here.
with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue", secondary_hue="indigo"), title=settings.APP_TITLE) as demo:
# ======================================================================
# 1. DEFINE THE UI LAYOUT DIRECTLY WITHIN THE MAIN SCRIPT
# This is the most robust pattern and resolves all context-related errors.
# ======================================================================
# State object to hold the DataAnalyzer instance
state_analyzer = gr.State()
# --- Header ---
gr.Markdown(f"<h1>{settings.APP_TITLE}</h1>")
gr.Markdown("A world-class data discovery platform that provides a complete suite of EDA tools and intelligently unlocks specialized analysis modules.")
# --- Input Row ---
with gr.Row():
upload_button = gr.File(label="1. Upload Data File (CSV, Excel)", file_types=[".csv", ".xlsx"], scale=3)
analyze_button = gr.Button("✨ Generate Intelligence Report", variant="primary", scale=1)
# --- Main Tabs ---
with gr.Tabs():
with gr.Tab("πŸ€– AI-Powered Strategy Report", id="tab_ai"):
ai_report_output = gr.Markdown("### Your AI-generated report will appear here after analysis...")
with gr.Tab("πŸ“‹ Data Profile", id="tab_profile"):
with gr.Accordion("Missing Values Report", open=False):
profile_missing_df = gr.DataFrame()
with gr.Accordion("Numeric Features Summary", open=True):
profile_numeric_df = gr.DataFrame()
with gr.Accordion("Categorical Features Summary", open=True):
profile_categorical_df = gr.DataFrame()
with gr.Tab("πŸ“Š Overview Visuals", id="tab_overview"):
with gr.Row():
plot_types = gr.Plot()
plot_missing = gr.Plot()
plot_correlation = gr.Plot()
with gr.Tab("🎨 Interactive Explorer", id="tab_explorer"):
gr.Markdown("### Univariate Analysis")
with gr.Row():
dd_hist_col = gr.Dropdown(label="Select Column for Histogram", interactive=True)
plot_histogram = gr.Plot()
gr.Markdown("### Bivariate Analysis")
with gr.Row():
with gr.Column(scale=1):
dd_scatter_x = gr.Dropdown(label="X-Axis (Numeric)", interactive=True)
dd_scatter_y = gr.Dropdown(label="Y-Axis (Numeric)", interactive=True)
dd_scatter_color = gr.Dropdown(label="Color By (Optional)", interactive=True)
with gr.Column(scale=2):
plot_scatter = gr.Plot()
with gr.Tab("🧩 Clustering (K-Means)", id="tab_cluster", visible=False) as tab_cluster:
with gr.Row():
with gr.Column(scale=1):
num_clusters = gr.Slider(minimum=2, maximum=10, value=3, step=1, label="Number of Clusters (K)", interactive=True)
md_cluster_summary = gr.Markdown()
with gr.Column(scale=2):
plot_cluster = gr.Plot()
plot_elbow = gr.Plot()
tab_timeseries = gr.Tab("βŒ› Time-Series Analysis", id="tab_timeseries", visible=False)
tab_text = gr.Tab("πŸ“ Text Analysis", id="tab_text", visible=False)
# --- Collect all components into a dictionary for easy access ---
components = {
"state_analyzer": state_analyzer, "upload_button": upload_button, "analyze_button": analyze_button,
"ai_report_output": ai_report_output, "profile_missing_df": profile_missing_df,
"profile_numeric_df": profile_numeric_df, "profile_categorical_df": profile_categorical_df,
"plot_types": plot_types, "plot_missing": plot_missing, "plot_correlation": plot_correlation,
"dd_hist_col": dd_hist_col, "plot_histogram": plot_histogram, "dd_scatter_x": dd_scatter_x,
"dd_scatter_y": dd_scatter_y, "dd_scatter_color": dd_scatter_color, "plot_scatter": plot_scatter,
"tab_timeseries": tab_timeseries, "tab_text": tab_text, "tab_cluster": tab_cluster,
"num_clusters": num_clusters, "md_cluster_summary": md_cluster_summary,
"plot_cluster": plot_cluster, "plot_elbow": plot_elbow,
}
# ======================================================================
# 2. REGISTER EVENT HANDLERS
# Now that components is a guaranteed dictionary, this will work.
# ======================================================================
# --- Primary Analysis Chain ---
analysis_complete_event = components["analyze_button"].click(
fn=callbacks.run_initial_analysis,
inputs=[components["upload_button"]],
outputs=[components["state_analyzer"]]
)
analysis_complete_event.then(
fn=callbacks.generate_reports_and_visuals,
inputs=[components["state_analyzer"]],
outputs=components
)
# --- Interactive Explorer Callbacks ---
components["dd_hist_col"].change(
fn=callbacks.create_histogram,
inputs=[components["state_analyzer"], components["dd_hist_col"]],
outputs=[components["plot_histogram"]]
)
scatter_inputs = [
components["state_analyzer"], components["dd_scatter_x"],
components["dd_scatter_y"], components["dd_scatter_color"]
]
for dropdown in [components["dd_scatter_x"], components["dd_scatter_y"], components["dd_scatter_color"]]:
dropdown.change(
fn=callbacks.create_scatterplot, inputs=scatter_inputs, outputs=[components["plot_scatter"]]
)
# --- Specialized Module Callbacks ---
components["num_clusters"].change(
fn=callbacks.update_clustering,
inputs=[components["state_analyzer"], components["num_clusters"]],
outputs=[components["plot_cluster"], components["plot_elbow"], components["md_cluster_summary"]]
)
# 3. Launch the application server
demo.launch(debug=False, server_name="0.0.0.0")
# --- Application Entry Point ---
if __name__ == "__main__":
main()