Spaces:
Sleeping
Sleeping
Delete odules/profiling.py
Browse files- odules/profiling.py +0 -86
odules/profiling.py
DELETED
@@ -1,86 +0,0 @@
|
|
1 |
-
# modules/profiling.py
|
2 |
-
|
3 |
-
# -*- coding: utf-8 -*-
|
4 |
-
#
|
5 |
-
# PROJECT: CognitiveEDA v5.7 - The QuantumLeap Intelligence Platform
|
6 |
-
#
|
7 |
-
# DESCRIPTION: A dedicated module for profiling and characterizing customer
|
8 |
-
# segments identified through clustering.
|
9 |
-
|
10 |
-
import pandas as pd
|
11 |
-
import plotly.express as px
|
12 |
-
import plotly.graph_objects as go
|
13 |
-
import logging
|
14 |
-
|
15 |
-
def profile_clusters(df: pd.DataFrame, cluster_labels: pd.Series, numeric_cols: list, cat_cols: list) -> tuple:
|
16 |
-
"""
|
17 |
-
Analyzes and profiles clusters to create meaningful business personas.
|
18 |
-
|
19 |
-
This function groups the data by cluster and calculates key statistics
|
20 |
-
for numeric and categorical features to describe each segment. It then
|
21 |
-
visualizes these differences.
|
22 |
-
|
23 |
-
Args:
|
24 |
-
df (pd.DataFrame): The feature-engineered DataFrame.
|
25 |
-
cluster_labels (pd.Series): The series of cluster labels from the K-Means model.
|
26 |
-
numeric_cols (list): List of numeric columns to profile (e.g., ['Total_Revenue']).
|
27 |
-
cat_cols (list): List of categorical columns to profile (e.g., ['City', 'Product']).
|
28 |
-
|
29 |
-
Returns:
|
30 |
-
A tuple containing:
|
31 |
-
- A markdown string with the detailed profile of each cluster.
|
32 |
-
- A Plotly Figure visualizing the differences between clusters.
|
33 |
-
"""
|
34 |
-
if df.empty or cluster_labels.empty:
|
35 |
-
return "No data to profile.", go.Figure()
|
36 |
-
|
37 |
-
logging.info(f"Profiling {cluster_labels.nunique()} clusters...")
|
38 |
-
|
39 |
-
profile_df = df.copy()
|
40 |
-
profile_df['Cluster'] = cluster_labels
|
41 |
-
|
42 |
-
# --- Generate Markdown Report ---
|
43 |
-
report_md = "### Cluster Persona Analysis\n\n"
|
44 |
-
|
45 |
-
# Analyze numeric features by cluster
|
46 |
-
numeric_profile = profile_df.groupby('Cluster')[numeric_cols].mean().round(2)
|
47 |
-
|
48 |
-
# Analyze categorical features by cluster (get the most frequent value - mode)
|
49 |
-
cat_profile_list = []
|
50 |
-
for col in cat_cols:
|
51 |
-
mode_series = profile_df.groupby('Cluster')[col].apply(lambda x: x.mode().iloc[0])
|
52 |
-
mode_df = mode_series.to_frame()
|
53 |
-
cat_profile_list.append(mode_df)
|
54 |
-
|
55 |
-
full_profile = pd.concat([numeric_profile] + cat_profile_list, axis=1)
|
56 |
-
|
57 |
-
for cluster_id in sorted(profile_df['Cluster'].unique()):
|
58 |
-
report_md += f"#### Cluster {cluster_id}: The '{full_profile.loc[cluster_id, 'City']}' Persona\n"
|
59 |
-
|
60 |
-
# Numeric Summary
|
61 |
-
for col in numeric_cols:
|
62 |
-
val = full_profile.loc[cluster_id, col]
|
63 |
-
report_md += f"- **Avg. {col.replace('_', ' ')}:** `{val:,.2f}`\n"
|
64 |
-
|
65 |
-
# Categorical Summary
|
66 |
-
for col in cat_cols:
|
67 |
-
val = full_profile.loc[cluster_id, col]
|
68 |
-
report_md += f"- **Dominant {col}:** `{val}`\n"
|
69 |
-
report_md += "\n"
|
70 |
-
|
71 |
-
# --- Generate Visualization ---
|
72 |
-
# We'll visualize the average 'Total_Revenue' by 'City' for each cluster
|
73 |
-
# This directly tests our hypothesis that 'City' is the dominant feature.
|
74 |
-
vis_df = profile_df.groupby(['Cluster', 'City'])['Total_Revenue'].mean().reset_index()
|
75 |
-
|
76 |
-
fig = px.bar(
|
77 |
-
vis_df,
|
78 |
-
x='Cluster',
|
79 |
-
y='Total_Revenue',
|
80 |
-
color='City',
|
81 |
-
barmode='group',
|
82 |
-
title='<b>Cluster Profile: Avg. Total Revenue by City</b>',
|
83 |
-
labels={'Total_Revenue': 'Average Total Revenue ($)', 'Cluster': 'Customer Segment'}
|
84 |
-
)
|
85 |
-
|
86 |
-
return report_md, fig
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|