mgbam commited on
Commit
41ceb78
·
verified ·
1 Parent(s): fe02df7

Create odules/profiling.py

Browse files
Files changed (1) hide show
  1. odules/profiling.py +86 -0
odules/profiling.py ADDED
@@ -0,0 +1,86 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # modules/profiling.py
2
+
3
+ # -*- coding: utf-8 -*-
4
+ #
5
+ # PROJECT: CognitiveEDA v5.7 - The QuantumLeap Intelligence Platform
6
+ #
7
+ # DESCRIPTION: A dedicated module for profiling and characterizing customer
8
+ # segments identified through clustering.
9
+
10
+ import pandas as pd
11
+ import plotly.express as px
12
+ import plotly.graph_objects as go
13
+ import logging
14
+
15
+ def profile_clusters(df: pd.DataFrame, cluster_labels: pd.Series, numeric_cols: list, cat_cols: list) -> tuple:
16
+ """
17
+ Analyzes and profiles clusters to create meaningful business personas.
18
+
19
+ This function groups the data by cluster and calculates key statistics
20
+ for numeric and categorical features to describe each segment. It then
21
+ visualizes these differences.
22
+
23
+ Args:
24
+ df (pd.DataFrame): The feature-engineered DataFrame.
25
+ cluster_labels (pd.Series): The series of cluster labels from the K-Means model.
26
+ numeric_cols (list): List of numeric columns to profile (e.g., ['Total_Revenue']).
27
+ cat_cols (list): List of categorical columns to profile (e.g., ['City', 'Product']).
28
+
29
+ Returns:
30
+ A tuple containing:
31
+ - A markdown string with the detailed profile of each cluster.
32
+ - A Plotly Figure visualizing the differences between clusters.
33
+ """
34
+ if df.empty or cluster_labels.empty:
35
+ return "No data to profile.", go.Figure()
36
+
37
+ logging.info(f"Profiling {cluster_labels.nunique()} clusters...")
38
+
39
+ profile_df = df.copy()
40
+ profile_df['Cluster'] = cluster_labels
41
+
42
+ # --- Generate Markdown Report ---
43
+ report_md = "### Cluster Persona Analysis\n\n"
44
+
45
+ # Analyze numeric features by cluster
46
+ numeric_profile = profile_df.groupby('Cluster')[numeric_cols].mean().round(2)
47
+
48
+ # Analyze categorical features by cluster (get the most frequent value - mode)
49
+ cat_profile_list = []
50
+ for col in cat_cols:
51
+ mode_series = profile_df.groupby('Cluster')[col].apply(lambda x: x.mode().iloc[0])
52
+ mode_df = mode_series.to_frame()
53
+ cat_profile_list.append(mode_df)
54
+
55
+ full_profile = pd.concat([numeric_profile] + cat_profile_list, axis=1)
56
+
57
+ for cluster_id in sorted(profile_df['Cluster'].unique()):
58
+ report_md += f"#### Cluster {cluster_id}: The '{full_profile.loc[cluster_id, 'City']}' Persona\n"
59
+
60
+ # Numeric Summary
61
+ for col in numeric_cols:
62
+ val = full_profile.loc[cluster_id, col]
63
+ report_md += f"- **Avg. {col.replace('_', ' ')}:** `{val:,.2f}`\n"
64
+
65
+ # Categorical Summary
66
+ for col in cat_cols:
67
+ val = full_profile.loc[cluster_id, col]
68
+ report_md += f"- **Dominant {col}:** `{val}`\n"
69
+ report_md += "\n"
70
+
71
+ # --- Generate Visualization ---
72
+ # We'll visualize the average 'Total_Revenue' by 'City' for each cluster
73
+ # This directly tests our hypothesis that 'City' is the dominant feature.
74
+ vis_df = profile_df.groupby(['Cluster', 'City'])['Total_Revenue'].mean().reset_index()
75
+
76
+ fig = px.bar(
77
+ vis_df,
78
+ x='Cluster',
79
+ y='Total_Revenue',
80
+ color='City',
81
+ barmode='group',
82
+ title='<b>Cluster Profile: Avg. Total Revenue by City</b>',
83
+ labels={'Total_Revenue': 'Average Total Revenue ($)', 'Cluster': 'Customer Segment'}
84
+ )
85
+
86
+ return report_md, fig