File size: 25,394 Bytes
cd0b15a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
import os
import json
import csv
import asyncio
import xml.etree.ElementTree as ET
from typing import Any, Dict, Optional, Tuple, Union, List

import httpx
import gradio as gr
import torch
from dotenv import load_dotenv
from loguru import logger
from huggingface_hub import login
from openai import OpenAI
from reportlab.pdfgen import canvas
from transformers import (
    AutoTokenizer,
    AutoModelForSequenceClassification,
    MarianMTModel,
    MarianTokenizer,
)
import pandas as pd
import altair as alt
import spacy
import spacy.cli
import PyPDF2  # For PDF reading

# Ensure spaCy model is downloaded
try:
    nlp = spacy.load("en_core_web_sm")
except OSError:
    logger.info("Downloading SpaCy 'en_core_web_sm' model...")
    spacy.cli.download("en_core_web_sm")
    nlp = spacy.load("en_core_web_sm")

# Logging
logger.add("error_logs.log", rotation="1 MB", level="ERROR")

# Load environment variables
load_dotenv()
HUGGINGFACE_TOKEN = os.getenv("HF_TOKEN")
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
ENTREZ_EMAIL = os.getenv("ENTREZ_EMAIL")

# Basic checks
if not HUGGINGFACE_TOKEN or not OPENAI_API_KEY:
    logger.error("Missing Hugging Face or OpenAI credentials.")
    raise ValueError("Missing credentials for Hugging Face or OpenAI.")

# API endpoints
PUBMED_SEARCH_URL = "https://eutils.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi"
PUBMED_FETCH_URL = "https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi"
EUROPE_PMC_BASE_URL = "https://www.ebi.ac.uk/europepmc/webservices/rest/search"

# Hugging Face login
login(HUGGINGFACE_TOKEN)

# Initialize OpenAI
client = OpenAI(api_key=OPENAI_API_KEY)

# Device setting
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
logger.info(f"Using device: {device}")

# Model settings
MODEL_NAME = "mgbam/bert-base-finetuned-mgbam"
try:
    model = AutoModelForSequenceClassification.from_pretrained(
        MODEL_NAME, use_auth_token=HUGGINGFACE_TOKEN
    ).to(device)
    tokenizer = AutoTokenizer.from_pretrained(
        MODEL_NAME, use_auth_token=HUGGINGFACE_TOKEN
    )
except Exception as e:
    logger.error(f"Model load error: {e}")
    raise

# Translation model settings
try:
    translation_model_name = "Helsinki-NLP/opus-mt-en-fr"
    translation_model = MarianMTModel.from_pretrained(
        translation_model_name, use_auth_token=HUGGINGFACE_TOKEN
    ).to(device)
    translation_tokenizer = MarianTokenizer.from_pretrained(
        translation_model_name, use_auth_token=HUGGINGFACE_TOKEN
    )
except Exception as e:
    logger.error(f"Translation model load error: {e}")
    raise

LANGUAGE_MAP: Dict[str, Tuple[str, str]] = {
    "English to French": ("en", "fr"),
    "French to English": ("fr", "en"),
}

### Utility Functions ###
def safe_json_parse(text: str) -> Union[Dict, None]:
    """Safely parse JSON string into a Python dictionary."""
    try:
        return json.loads(text)
    except json.JSONDecodeError as e:
        logger.error(f"JSON parsing error: {e}")
        return None

def parse_pubmed_xml(xml_data: str) -> List[Dict[str, Any]]:
    """Parses PubMed XML data and returns a list of structured articles."""
    root = ET.fromstring(xml_data)
    articles = []
    for article in root.findall(".//PubmedArticle"):
        pmid = article.findtext(".//PMID")
        title = article.findtext(".//ArticleTitle")
        abstract = article.findtext(".//AbstractText")
        journal = article.findtext(".//Journal/Title")
        pub_date_elem = article.find(".//JournalIssue/PubDate")
        pub_date = None
        if pub_date_elem is not None:
            year = pub_date_elem.findtext("Year")
            month = pub_date_elem.findtext("Month")
            day = pub_date_elem.findtext("Day")
            if year and month and day:
                pub_date = f"{year}-{month}-{day}"
            else:
                pub_date = year
        articles.append({
            "PMID": pmid,
            "Title": title,
            "Abstract": abstract,
            "Journal": journal,
            "PublicationDate": pub_date,
        })
    return articles

### Async Functions for Europe PMC ###
async def fetch_articles_by_nct_id(nct_id: str) -> Dict[str, Any]:
    params = {"query": nct_id, "format": "json"}
    async with httpx.AsyncClient() as client_http:
        try:
            response = await client_http.get(EUROPE_PMC_BASE_URL, params=params)
            response.raise_for_status()
            return response.json()
        except Exception as e:
            logger.error(f"Error fetching articles for {nct_id}: {e}")
            return {"error": str(e)}

async def fetch_articles_by_query(query_params: str) -> Dict[str, Any]:
    parsed_params = safe_json_parse(query_params)
    if not parsed_params or not isinstance(parsed_params, dict):
        return {"error": "Invalid JSON."}
    query_string = " AND ".join(f"{k}:{v}" for k, v in parsed_params.items())
    params = {"query": query_string, "format": "json"}
    async with httpx.AsyncClient() as client_http:
        try:
            response = await client_http.get(EUROPE_PMC_BASE_URL, params=params)
            response.raise_for_status()
            return response.json()
        except Exception as e:
            logger.error(f"Error fetching articles: {e}")
            return {"error": str(e)}

### PubMed Integration ###
async def fetch_pubmed_by_query(query_params: str) -> Dict[str, Any]:
    parsed_params = safe_json_parse(query_params)
    if not parsed_params or not isinstance(parsed_params, dict):
        return {"error": "Invalid JSON for PubMed."}

    search_params = {
        "db": "pubmed",
        "retmode": "json",
        "email": ENTREZ_EMAIL,
        "retmax": parsed_params.get("retmax", "10"),
        "term": parsed_params.get("term", ""),
    }

    async with httpx.AsyncClient() as client_http:
        try:
            search_response = await client_http.get(PUBMED_SEARCH_URL, params=search_params)
            search_response.raise_for_status()
            search_data = search_response.json()
            id_list = search_data.get("esearchresult", {}).get("idlist", [])
            if not id_list:
                return {"result": ""}

            fetch_params = {
                "db": "pubmed",
                "id": ",".join(id_list),
                "retmode": "xml",
                "email": ENTREZ_EMAIL,
            }
            fetch_response = await client_http.get(PUBMED_FETCH_URL, params=fetch_params)
            fetch_response.raise_for_status()
            return {"result": fetch_response.text}
        except Exception as e:
            logger.error(f"Error fetching PubMed articles: {e}")
            return {"error": str(e)}

### Crossref Integration ###
async def fetch_crossref_by_query(query_params: str) -> Dict[str, Any]:
    parsed_params = safe_json_parse(query_params)
    if not parsed_params or not isinstance(parsed_params, dict):
        return {"error": "Invalid JSON for Crossref."}
    CROSSREF_API_URL = "https://api.crossref.org/works"
    async with httpx.AsyncClient() as client_http:
        try:
            response = await client_http.get(CROSSREF_API_URL, params=parsed_params)
            response.raise_for_status()
            return response.json()
        except Exception as e:
            logger.error(f"Error fetching Crossref data: {e}")
            return {"error": str(e)}

### Core Functions ###
def summarize_text(text: str) -> str:
    """Summarize text using OpenAI."""
    if not text.strip():
        return "No text provided for summarization."
    try:
        response = client.chat.completions.create(
            model="gpt-3.5-turbo",
            messages=[{"role": "user", "content": f"Summarize the following clinical data:\n{text}"}],
            max_tokens=200,
            temperature=0.7,
        )
        return response.choices[0].message.content.strip()
    except Exception as e:
        logger.error(f"Summarization Error: {e}")
        return "Summarization failed."

def predict_outcome(text: str) -> Union[Dict[str, float], str]:
    """Predict outcomes (classification) using a fine-tuned model."""
    if not text.strip():
        return "No text provided for prediction."
    try:
        inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True)
        inputs = {k: v.to(device) for k, v in inputs.items()}
        with torch.no_grad():
            outputs = model(**inputs)
        probabilities = torch.nn.functional.softmax(outputs.logits, dim=-1)[0]
        return {f"Label {i+1}": float(prob.item()) for i, prob in enumerate(probabilities)}
    except Exception as e:
        logger.error(f"Prediction Error: {e}")
        return "Prediction failed."

def generate_report(text: str, filename: str = "clinical_report.pdf") -> Optional[str]:
    """Generate a PDF report from the given text."""
    try:
        if not text.strip():
            logger.warning("No text provided for the report.")
        c = canvas.Canvas(filename)
        c.drawString(100, 750, "Clinical Research Report")
        lines = text.split("\n")
        y = 730
        for line in lines:
            if y < 50:
                c.showPage()
                y = 750
            c.drawString(100, y, line)
            y -= 15
        c.save()
        logger.info(f"Report generated: {filename}")
        return filename
    except Exception as e:
        logger.error(f"Report Generation Error: {e}")
        return None

def visualize_predictions(predictions: Dict[str, float]) -> Optional[alt.Chart]:
    """Visualize model prediction probabilities using Altair."""
    try:
        data = pd.DataFrame(list(predictions.items()), columns=["Label", "Probability"])
        chart = (
            alt.Chart(data)
            .mark_bar()
            .encode(
                x=alt.X("Label:N", sort=None),
                y="Probability:Q",
                tooltip=["Label", "Probability"],
            )
            .properties(title="Prediction Probabilities", width=500, height=300)
        )
        return chart
    except Exception as e:
        logger.error(f"Visualization Error: {e}")
        return None

def translate_text(text: str, translation_option: str) -> str:
    """Translate text between English and French."""
    if not text.strip():
        return "No text provided for translation."
    try:
        if translation_option not in LANGUAGE_MAP:
            return "Unsupported translation option."
        inputs = translation_tokenizer(text, return_tensors="pt", padding=True).to(device)
        translated_tokens = translation_model.generate(**inputs)
        return translation_tokenizer.decode(translated_tokens[0], skip_special_tokens=True)
    except Exception as e:
        logger.error(f"Translation Error: {e}")
        return "Translation failed."

def perform_named_entity_recognition(text: str) -> str:
    """Perform Named Entity Recognition (NER) using spaCy."""
    if not text.strip():
        return "No text provided for NER."
    try:
        doc = nlp(text)
        entities = [(ent.text, ent.label_) for ent in doc.ents]
        if not entities:
            return "No named entities found."
        return "\n".join(f"{ent_text} -> {ent_label}" for ent_text, ent_label in entities)
    except Exception as e:
        logger.error(f"NER Error: {e}")
        return "Named Entity Recognition failed."

### Enhanced EDA ###
def perform_enhanced_eda(df: pd.DataFrame) -> Tuple[str, Optional[alt.Chart], Optional[alt.Chart]]:
    """

    Perform a more advanced EDA given a DataFrame:

      - Show dataset info (columns, shape, numeric summary).

      - Generate a correlation heatmap (for numeric columns).

      - Generate distribution plots (histograms) for numeric columns.

    Returns (text_summary, correlation_chart, distribution_chart).

    """
    try:
        # Basic info
        columns_info = f"Columns: {list(df.columns)}"
        shape_info = f"Shape: {df.shape[0]} rows x {df.shape[1]} columns"

        # Use describe with "include='all'" to show all columns summary
        with pd.option_context("display.max_colwidth", 200, "display.max_rows", None):
            describe_info = df.describe(include="all").to_string()

        summary_text = (
            f"--- Enhanced EDA Summary ---\n"
            f"{columns_info}\n{shape_info}\n\n"
            f"Summary Statistics:\n{describe_info}\n"
        )

        # Correlation heatmap
        numeric_cols = df.select_dtypes(include="number")
        corr_chart = None
        if numeric_cols.shape[1] >= 2:
            corr = numeric_cols.corr()
            corr_melted = corr.reset_index().melt(id_vars="index")
            corr_melted.columns = ["Feature1", "Feature2", "Correlation"]
            corr_chart = (
                alt.Chart(corr_melted)
                .mark_rect()
                .encode(
                    x="Feature1:O",
                    y="Feature2:O",
                    color="Correlation:Q",
                    tooltip=["Feature1", "Feature2", "Correlation"]
                )
                .properties(width=400, height=400, title="Correlation Heatmap")
            )

        # Distribution plots (histograms) for numeric columns
        distribution_chart = None
        if numeric_cols.shape[1] >= 1:
            df_long = numeric_cols.melt(var_name='Column', value_name='Value')
            distribution_chart = (
                alt.Chart(df_long)
                .mark_bar()
                .encode(
                    alt.X("Value:Q", bin=alt.Bin(maxbins=30)),
                    alt.Y('count()'),
                    alt.Facet('Column:N', columns=2),
                    tooltip=["Value"]
                )
                .properties(
                    title='Distribution of Numeric Columns',
                    width=300,
                    height=200
                )
                .interactive()
            )

        return summary_text, corr_chart, distribution_chart

    except Exception as e:
        logger.error(f"Enhanced EDA Error: {e}")
        return f"Enhanced EDA failed: {e}", None, None

### File Handling ###
def read_uploaded_file(uploaded_file: Optional[gr.File]) -> str:
    """

    Reads the content of an uploaded file (txt, csv, xls, xlsx, pdf).

    Returns the extracted text or CSV-like content.

    """
    if uploaded_file is None:
        return ""

    file_name = uploaded_file.name
    file_ext = os.path.splitext(file_name)[1].lower()

    try:
        # For text
        if file_ext == ".txt":
            return uploaded_file.read().decode("utf-8")

        # For CSV
        elif file_ext == ".csv":
            return uploaded_file.read().decode("utf-8")

        # For Excel
        elif file_ext in [".xls", ".xlsx"]:
            # We'll just return empty here and parse it later into a DataFrame
            # because we can read the binary directly into pd.read_excel().
            # Or store as bytes for later use in EDA.
            return "EXCEL_FILE_PLACEHOLDER"  # We'll handle it differently in EDA step

        # For PDF
        elif file_ext == ".pdf":
            pdf_reader = PyPDF2.PdfReader(uploaded_file)
            text_content = []
            for page in pdf_reader.pages:
                text_content.append(page.extract_text())
            return "\n".join(text_content)

        else:
            return f"Unsupported file format: {file_ext}"
    except Exception as e:
        logger.error(f"File read error: {e}")
        return f"Error reading file: {e}"

def parse_excel_file(uploaded_file) -> pd.DataFrame:
    """

    Parse an Excel file into a pandas DataFrame.

    We assume the user wants the first sheet or we can guess.

    """
    try:
        # For Excel, we can do:
        df = pd.read_excel(uploaded_file, engine="openpyxl")
        return df
    except Exception as e:
        logger.error(f"Excel parsing error: {e}")
        raise

def parse_csv_content(csv_content: str) -> pd.DataFrame:
    """

    Attempt to parse CSV content with both utf-8 and utf-8-sig to handle BOM issues.

    """
    from io import StringIO
    errors = []
    for encoding_try in ["utf-8", "utf-8-sig"]:
        try:
            df = pd.read_csv(StringIO(csv_content), encoding=encoding_try)
            return df
        except Exception as e:
            errors.append(f"Encoding {encoding_try} failed: {e}")
    error_msg = "Could not parse CSV content.\n" + "\n".join(errors)
    logger.error(error_msg)
    raise ValueError(error_msg)

### Gradio Interface ###
with gr.Blocks() as demo:
    gr.Markdown("# ✨ Advanced Clinical Research Assistant with Enhanced EDA ✨")
    gr.Markdown("""

Welcome to the **Enhanced** AI-Powered Clinical Assistant!  

- **Summarize** large blocks of clinical text.  

- **Predict** outcomes with a fine-tuned model.  

- **Translate** text between English & French.  

- **Perform Named Entity Recognition** with spaCy.  

- **Fetch** from PubMed, Crossref, Europe PMC.  

- **Generate** professional PDF reports.  

- **Perform Enhanced EDA** on CSV/Excel data with correlation heatmaps & distribution plots.  

""")
    
    # Inputs
    with gr.Row():
        text_input = gr.Textbox(label="Input Text", lines=5, placeholder="Enter clinical text or query...")
        file_input = gr.File(
            label="Upload File (txt/csv/xls/xlsx/pdf)",
            file_types=[".txt", ".csv", ".xls", ".xlsx", ".pdf"]
        )
    
    action = gr.Radio(
        [
            "Summarize",
            "Predict Outcome",
            "Generate Report",
            "Translate",
            "Perform Named Entity Recognition",
            "Perform Enhanced EDA",
            "Fetch Clinical Studies",
            "Fetch PubMed Articles (Legacy)",
            "Fetch PubMed by Query",
            "Fetch Crossref by Query",
        ],
        label="Select an Action",
    )
    translation_option = gr.Dropdown(
        choices=list(LANGUAGE_MAP.keys()), 
        label="Translation Option", 
        value="English to French"
    )
    query_params_input = gr.Textbox(
        label="Query Parameters (JSON Format)",
        placeholder='{"term": "cancer", "retmax": "5"}'
    )
    nct_id_input = gr.Textbox(label="NCT ID for Article Search")
    report_filename_input = gr.Textbox(
        label="Report Filename",
        placeholder="clinical_report.pdf",
        value="clinical_report.pdf"
    )
    export_format = gr.Dropdown(["None", "CSV", "JSON"], label="Export Format")
    
    # Outputs
    output_text = gr.Textbox(label="Output", lines=10)
    
    with gr.Row():
        output_chart = gr.Plot(label="Visualization 1")
        output_chart2 = gr.Plot(label="Visualization 2")
    
    output_file = gr.File(label="Generated File")
    
    submit_button = gr.Button("Submit")
    
    # Async function for handling actions
    async def handle_action(

        action: str,

        text: str,

        file_up: gr.File,

        translation_opt: str,

        query_params: str,

        nct_id: str,

        report_filename: str,

        export_format: str

    ) -> Tuple[Optional[str], Optional[Any], Optional[Any], Optional[str]]:
        
        # Read the uploaded file
        file_content = read_uploaded_file(file_up)
        combined_text = (text + "\n" + file_content).strip() if file_content else text
        
        # Branch by action
        if action == "Summarize":
            return summarize_text(combined_text), None, None, None
        
        elif action == "Predict Outcome":
            predictions = predict_outcome(combined_text)
            if isinstance(predictions, dict):
                chart = visualize_predictions(predictions)
                return json.dumps(predictions, indent=2), chart, None, None
            return predictions, None, None, None
        
        elif action == "Generate Report":
            file_path = generate_report(combined_text, filename=report_filename)
            msg = f"Report generated: {file_path}" if file_path else "Report generation failed."
            return msg, None, None, file_path
        
        elif action == "Translate":
            return translate_text(combined_text, translation_opt), None, None, None
        
        elif action == "Perform Named Entity Recognition":
            ner_result = perform_named_entity_recognition(combined_text)
            return ner_result, None, None, None
        
        elif action == "Perform Enhanced EDA":
            # We expect the user to either upload a CSV or Excel, or paste CSV content.
            if file_up is None and not combined_text:
                return "No data provided for EDA.", None, None, None

            # If Excel was uploaded
            if file_up and file_up.name.lower().endswith((".xls", ".xlsx")):
                try:
                    df_excel = parse_excel_file(file_up)
                    eda_summary, corr_chart, dist_chart = perform_enhanced_eda(df_excel)
                    return eda_summary, corr_chart, dist_chart, None
                except Exception as e:
                    return f"Excel EDA failed: {e}", None, None, None
            
            # If CSV was uploaded
            if file_up and file_up.name.lower().endswith(".csv"):
                try:
                    df_csv = parse_csv_content(file_content)
                    eda_summary, corr_chart, dist_chart = perform_enhanced_eda(df_csv)
                    return eda_summary, corr_chart, dist_chart, None
                except Exception as e:
                    return f"CSV EDA failed: {e}", None, None, None
            
            # If user just pasted CSV content (no file)
            if not file_up and "," in combined_text:
                try:
                    df_csv = parse_csv_content(combined_text)
                    eda_summary, corr_chart, dist_chart = perform_enhanced_eda(df_csv)
                    return eda_summary, corr_chart, dist_chart, None
                except Exception as e:
                    return f"CSV EDA failed: {e}", None, None, None
            
            # Otherwise, not supported
            return "No valid CSV/Excel data found for EDA.", None, None, None
        
        elif action == "Fetch Clinical Studies":
            if nct_id:
                result = await fetch_articles_by_nct_id(nct_id)
            elif query_params:
                result = await fetch_articles_by_query(query_params)
            else:
                return "Provide either an NCT ID or valid query parameters.", None, None, None
            
            articles = result.get("resultList", {}).get("result", [])
            if not articles:
                return "No articles found.", None, None, None
            
            formatted_results = "\n\n".join(
                f"Title: {a.get('title')}\nJournal: {a.get('journalTitle')} ({a.get('pubYear')})"
                for a in articles
            )
            return formatted_results, None, None, None
        
        elif action in ["Fetch PubMed Articles (Legacy)", "Fetch PubMed by Query"]:
            pubmed_result = await fetch_pubmed_by_query(query_params)
            xml_data = pubmed_result.get("result")
            if xml_data:
                articles = parse_pubmed_xml(xml_data)
                if not articles:
                    return "No articles found.", None, None, None
                formatted = "\n\n".join(
                    f"{a['Title']} - {a['Journal']} ({a['PublicationDate']})"
                    for a in articles if a['Title']
                )
                return formatted if formatted else "No articles found.", None, None, None
            return "No articles found or error fetching data.", None, None, None
        
        elif action == "Fetch Crossref by Query":
            crossref_result = await fetch_crossref_by_query(query_params)
            items = crossref_result.get("message", {}).get("items", [])
            if not items:
                return "No results found.", None, None, None
            formatted = "\n\n".join(
                f"Title: {item.get('title', ['No title'])[0]}, DOI: {item.get('DOI')}"
                for item in items
            )
            return formatted, None, None, None
        
        return "Invalid action.", None, None, None
    
    submit_button.click(
        handle_action,
        inputs=[
            action,
            text_input,
            file_input,
            translation_option,
            query_params_input,
            nct_id_input,
            report_filename_input,
            export_format,
        ],
        outputs=[output_text, output_chart, output_chart2, output_file],
    )

# Launch the Gradio app
demo.launch(server_name="0.0.0.0", server_port=7860, share=True)