Spaces:
Runtime error
Runtime error
File size: 25,394 Bytes
cd0b15a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 |
import os
import json
import csv
import asyncio
import xml.etree.ElementTree as ET
from typing import Any, Dict, Optional, Tuple, Union, List
import httpx
import gradio as gr
import torch
from dotenv import load_dotenv
from loguru import logger
from huggingface_hub import login
from openai import OpenAI
from reportlab.pdfgen import canvas
from transformers import (
AutoTokenizer,
AutoModelForSequenceClassification,
MarianMTModel,
MarianTokenizer,
)
import pandas as pd
import altair as alt
import spacy
import spacy.cli
import PyPDF2 # For PDF reading
# Ensure spaCy model is downloaded
try:
nlp = spacy.load("en_core_web_sm")
except OSError:
logger.info("Downloading SpaCy 'en_core_web_sm' model...")
spacy.cli.download("en_core_web_sm")
nlp = spacy.load("en_core_web_sm")
# Logging
logger.add("error_logs.log", rotation="1 MB", level="ERROR")
# Load environment variables
load_dotenv()
HUGGINGFACE_TOKEN = os.getenv("HF_TOKEN")
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
ENTREZ_EMAIL = os.getenv("ENTREZ_EMAIL")
# Basic checks
if not HUGGINGFACE_TOKEN or not OPENAI_API_KEY:
logger.error("Missing Hugging Face or OpenAI credentials.")
raise ValueError("Missing credentials for Hugging Face or OpenAI.")
# API endpoints
PUBMED_SEARCH_URL = "https://eutils.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi"
PUBMED_FETCH_URL = "https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi"
EUROPE_PMC_BASE_URL = "https://www.ebi.ac.uk/europepmc/webservices/rest/search"
# Hugging Face login
login(HUGGINGFACE_TOKEN)
# Initialize OpenAI
client = OpenAI(api_key=OPENAI_API_KEY)
# Device setting
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
logger.info(f"Using device: {device}")
# Model settings
MODEL_NAME = "mgbam/bert-base-finetuned-mgbam"
try:
model = AutoModelForSequenceClassification.from_pretrained(
MODEL_NAME, use_auth_token=HUGGINGFACE_TOKEN
).to(device)
tokenizer = AutoTokenizer.from_pretrained(
MODEL_NAME, use_auth_token=HUGGINGFACE_TOKEN
)
except Exception as e:
logger.error(f"Model load error: {e}")
raise
# Translation model settings
try:
translation_model_name = "Helsinki-NLP/opus-mt-en-fr"
translation_model = MarianMTModel.from_pretrained(
translation_model_name, use_auth_token=HUGGINGFACE_TOKEN
).to(device)
translation_tokenizer = MarianTokenizer.from_pretrained(
translation_model_name, use_auth_token=HUGGINGFACE_TOKEN
)
except Exception as e:
logger.error(f"Translation model load error: {e}")
raise
LANGUAGE_MAP: Dict[str, Tuple[str, str]] = {
"English to French": ("en", "fr"),
"French to English": ("fr", "en"),
}
### Utility Functions ###
def safe_json_parse(text: str) -> Union[Dict, None]:
"""Safely parse JSON string into a Python dictionary."""
try:
return json.loads(text)
except json.JSONDecodeError as e:
logger.error(f"JSON parsing error: {e}")
return None
def parse_pubmed_xml(xml_data: str) -> List[Dict[str, Any]]:
"""Parses PubMed XML data and returns a list of structured articles."""
root = ET.fromstring(xml_data)
articles = []
for article in root.findall(".//PubmedArticle"):
pmid = article.findtext(".//PMID")
title = article.findtext(".//ArticleTitle")
abstract = article.findtext(".//AbstractText")
journal = article.findtext(".//Journal/Title")
pub_date_elem = article.find(".//JournalIssue/PubDate")
pub_date = None
if pub_date_elem is not None:
year = pub_date_elem.findtext("Year")
month = pub_date_elem.findtext("Month")
day = pub_date_elem.findtext("Day")
if year and month and day:
pub_date = f"{year}-{month}-{day}"
else:
pub_date = year
articles.append({
"PMID": pmid,
"Title": title,
"Abstract": abstract,
"Journal": journal,
"PublicationDate": pub_date,
})
return articles
### Async Functions for Europe PMC ###
async def fetch_articles_by_nct_id(nct_id: str) -> Dict[str, Any]:
params = {"query": nct_id, "format": "json"}
async with httpx.AsyncClient() as client_http:
try:
response = await client_http.get(EUROPE_PMC_BASE_URL, params=params)
response.raise_for_status()
return response.json()
except Exception as e:
logger.error(f"Error fetching articles for {nct_id}: {e}")
return {"error": str(e)}
async def fetch_articles_by_query(query_params: str) -> Dict[str, Any]:
parsed_params = safe_json_parse(query_params)
if not parsed_params or not isinstance(parsed_params, dict):
return {"error": "Invalid JSON."}
query_string = " AND ".join(f"{k}:{v}" for k, v in parsed_params.items())
params = {"query": query_string, "format": "json"}
async with httpx.AsyncClient() as client_http:
try:
response = await client_http.get(EUROPE_PMC_BASE_URL, params=params)
response.raise_for_status()
return response.json()
except Exception as e:
logger.error(f"Error fetching articles: {e}")
return {"error": str(e)}
### PubMed Integration ###
async def fetch_pubmed_by_query(query_params: str) -> Dict[str, Any]:
parsed_params = safe_json_parse(query_params)
if not parsed_params or not isinstance(parsed_params, dict):
return {"error": "Invalid JSON for PubMed."}
search_params = {
"db": "pubmed",
"retmode": "json",
"email": ENTREZ_EMAIL,
"retmax": parsed_params.get("retmax", "10"),
"term": parsed_params.get("term", ""),
}
async with httpx.AsyncClient() as client_http:
try:
search_response = await client_http.get(PUBMED_SEARCH_URL, params=search_params)
search_response.raise_for_status()
search_data = search_response.json()
id_list = search_data.get("esearchresult", {}).get("idlist", [])
if not id_list:
return {"result": ""}
fetch_params = {
"db": "pubmed",
"id": ",".join(id_list),
"retmode": "xml",
"email": ENTREZ_EMAIL,
}
fetch_response = await client_http.get(PUBMED_FETCH_URL, params=fetch_params)
fetch_response.raise_for_status()
return {"result": fetch_response.text}
except Exception as e:
logger.error(f"Error fetching PubMed articles: {e}")
return {"error": str(e)}
### Crossref Integration ###
async def fetch_crossref_by_query(query_params: str) -> Dict[str, Any]:
parsed_params = safe_json_parse(query_params)
if not parsed_params or not isinstance(parsed_params, dict):
return {"error": "Invalid JSON for Crossref."}
CROSSREF_API_URL = "https://api.crossref.org/works"
async with httpx.AsyncClient() as client_http:
try:
response = await client_http.get(CROSSREF_API_URL, params=parsed_params)
response.raise_for_status()
return response.json()
except Exception as e:
logger.error(f"Error fetching Crossref data: {e}")
return {"error": str(e)}
### Core Functions ###
def summarize_text(text: str) -> str:
"""Summarize text using OpenAI."""
if not text.strip():
return "No text provided for summarization."
try:
response = client.chat.completions.create(
model="gpt-3.5-turbo",
messages=[{"role": "user", "content": f"Summarize the following clinical data:\n{text}"}],
max_tokens=200,
temperature=0.7,
)
return response.choices[0].message.content.strip()
except Exception as e:
logger.error(f"Summarization Error: {e}")
return "Summarization failed."
def predict_outcome(text: str) -> Union[Dict[str, float], str]:
"""Predict outcomes (classification) using a fine-tuned model."""
if not text.strip():
return "No text provided for prediction."
try:
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True)
inputs = {k: v.to(device) for k, v in inputs.items()}
with torch.no_grad():
outputs = model(**inputs)
probabilities = torch.nn.functional.softmax(outputs.logits, dim=-1)[0]
return {f"Label {i+1}": float(prob.item()) for i, prob in enumerate(probabilities)}
except Exception as e:
logger.error(f"Prediction Error: {e}")
return "Prediction failed."
def generate_report(text: str, filename: str = "clinical_report.pdf") -> Optional[str]:
"""Generate a PDF report from the given text."""
try:
if not text.strip():
logger.warning("No text provided for the report.")
c = canvas.Canvas(filename)
c.drawString(100, 750, "Clinical Research Report")
lines = text.split("\n")
y = 730
for line in lines:
if y < 50:
c.showPage()
y = 750
c.drawString(100, y, line)
y -= 15
c.save()
logger.info(f"Report generated: {filename}")
return filename
except Exception as e:
logger.error(f"Report Generation Error: {e}")
return None
def visualize_predictions(predictions: Dict[str, float]) -> Optional[alt.Chart]:
"""Visualize model prediction probabilities using Altair."""
try:
data = pd.DataFrame(list(predictions.items()), columns=["Label", "Probability"])
chart = (
alt.Chart(data)
.mark_bar()
.encode(
x=alt.X("Label:N", sort=None),
y="Probability:Q",
tooltip=["Label", "Probability"],
)
.properties(title="Prediction Probabilities", width=500, height=300)
)
return chart
except Exception as e:
logger.error(f"Visualization Error: {e}")
return None
def translate_text(text: str, translation_option: str) -> str:
"""Translate text between English and French."""
if not text.strip():
return "No text provided for translation."
try:
if translation_option not in LANGUAGE_MAP:
return "Unsupported translation option."
inputs = translation_tokenizer(text, return_tensors="pt", padding=True).to(device)
translated_tokens = translation_model.generate(**inputs)
return translation_tokenizer.decode(translated_tokens[0], skip_special_tokens=True)
except Exception as e:
logger.error(f"Translation Error: {e}")
return "Translation failed."
def perform_named_entity_recognition(text: str) -> str:
"""Perform Named Entity Recognition (NER) using spaCy."""
if not text.strip():
return "No text provided for NER."
try:
doc = nlp(text)
entities = [(ent.text, ent.label_) for ent in doc.ents]
if not entities:
return "No named entities found."
return "\n".join(f"{ent_text} -> {ent_label}" for ent_text, ent_label in entities)
except Exception as e:
logger.error(f"NER Error: {e}")
return "Named Entity Recognition failed."
### Enhanced EDA ###
def perform_enhanced_eda(df: pd.DataFrame) -> Tuple[str, Optional[alt.Chart], Optional[alt.Chart]]:
"""
Perform a more advanced EDA given a DataFrame:
- Show dataset info (columns, shape, numeric summary).
- Generate a correlation heatmap (for numeric columns).
- Generate distribution plots (histograms) for numeric columns.
Returns (text_summary, correlation_chart, distribution_chart).
"""
try:
# Basic info
columns_info = f"Columns: {list(df.columns)}"
shape_info = f"Shape: {df.shape[0]} rows x {df.shape[1]} columns"
# Use describe with "include='all'" to show all columns summary
with pd.option_context("display.max_colwidth", 200, "display.max_rows", None):
describe_info = df.describe(include="all").to_string()
summary_text = (
f"--- Enhanced EDA Summary ---\n"
f"{columns_info}\n{shape_info}\n\n"
f"Summary Statistics:\n{describe_info}\n"
)
# Correlation heatmap
numeric_cols = df.select_dtypes(include="number")
corr_chart = None
if numeric_cols.shape[1] >= 2:
corr = numeric_cols.corr()
corr_melted = corr.reset_index().melt(id_vars="index")
corr_melted.columns = ["Feature1", "Feature2", "Correlation"]
corr_chart = (
alt.Chart(corr_melted)
.mark_rect()
.encode(
x="Feature1:O",
y="Feature2:O",
color="Correlation:Q",
tooltip=["Feature1", "Feature2", "Correlation"]
)
.properties(width=400, height=400, title="Correlation Heatmap")
)
# Distribution plots (histograms) for numeric columns
distribution_chart = None
if numeric_cols.shape[1] >= 1:
df_long = numeric_cols.melt(var_name='Column', value_name='Value')
distribution_chart = (
alt.Chart(df_long)
.mark_bar()
.encode(
alt.X("Value:Q", bin=alt.Bin(maxbins=30)),
alt.Y('count()'),
alt.Facet('Column:N', columns=2),
tooltip=["Value"]
)
.properties(
title='Distribution of Numeric Columns',
width=300,
height=200
)
.interactive()
)
return summary_text, corr_chart, distribution_chart
except Exception as e:
logger.error(f"Enhanced EDA Error: {e}")
return f"Enhanced EDA failed: {e}", None, None
### File Handling ###
def read_uploaded_file(uploaded_file: Optional[gr.File]) -> str:
"""
Reads the content of an uploaded file (txt, csv, xls, xlsx, pdf).
Returns the extracted text or CSV-like content.
"""
if uploaded_file is None:
return ""
file_name = uploaded_file.name
file_ext = os.path.splitext(file_name)[1].lower()
try:
# For text
if file_ext == ".txt":
return uploaded_file.read().decode("utf-8")
# For CSV
elif file_ext == ".csv":
return uploaded_file.read().decode("utf-8")
# For Excel
elif file_ext in [".xls", ".xlsx"]:
# We'll just return empty here and parse it later into a DataFrame
# because we can read the binary directly into pd.read_excel().
# Or store as bytes for later use in EDA.
return "EXCEL_FILE_PLACEHOLDER" # We'll handle it differently in EDA step
# For PDF
elif file_ext == ".pdf":
pdf_reader = PyPDF2.PdfReader(uploaded_file)
text_content = []
for page in pdf_reader.pages:
text_content.append(page.extract_text())
return "\n".join(text_content)
else:
return f"Unsupported file format: {file_ext}"
except Exception as e:
logger.error(f"File read error: {e}")
return f"Error reading file: {e}"
def parse_excel_file(uploaded_file) -> pd.DataFrame:
"""
Parse an Excel file into a pandas DataFrame.
We assume the user wants the first sheet or we can guess.
"""
try:
# For Excel, we can do:
df = pd.read_excel(uploaded_file, engine="openpyxl")
return df
except Exception as e:
logger.error(f"Excel parsing error: {e}")
raise
def parse_csv_content(csv_content: str) -> pd.DataFrame:
"""
Attempt to parse CSV content with both utf-8 and utf-8-sig to handle BOM issues.
"""
from io import StringIO
errors = []
for encoding_try in ["utf-8", "utf-8-sig"]:
try:
df = pd.read_csv(StringIO(csv_content), encoding=encoding_try)
return df
except Exception as e:
errors.append(f"Encoding {encoding_try} failed: {e}")
error_msg = "Could not parse CSV content.\n" + "\n".join(errors)
logger.error(error_msg)
raise ValueError(error_msg)
### Gradio Interface ###
with gr.Blocks() as demo:
gr.Markdown("# ✨ Advanced Clinical Research Assistant with Enhanced EDA ✨")
gr.Markdown("""
Welcome to the **Enhanced** AI-Powered Clinical Assistant!
- **Summarize** large blocks of clinical text.
- **Predict** outcomes with a fine-tuned model.
- **Translate** text between English & French.
- **Perform Named Entity Recognition** with spaCy.
- **Fetch** from PubMed, Crossref, Europe PMC.
- **Generate** professional PDF reports.
- **Perform Enhanced EDA** on CSV/Excel data with correlation heatmaps & distribution plots.
""")
# Inputs
with gr.Row():
text_input = gr.Textbox(label="Input Text", lines=5, placeholder="Enter clinical text or query...")
file_input = gr.File(
label="Upload File (txt/csv/xls/xlsx/pdf)",
file_types=[".txt", ".csv", ".xls", ".xlsx", ".pdf"]
)
action = gr.Radio(
[
"Summarize",
"Predict Outcome",
"Generate Report",
"Translate",
"Perform Named Entity Recognition",
"Perform Enhanced EDA",
"Fetch Clinical Studies",
"Fetch PubMed Articles (Legacy)",
"Fetch PubMed by Query",
"Fetch Crossref by Query",
],
label="Select an Action",
)
translation_option = gr.Dropdown(
choices=list(LANGUAGE_MAP.keys()),
label="Translation Option",
value="English to French"
)
query_params_input = gr.Textbox(
label="Query Parameters (JSON Format)",
placeholder='{"term": "cancer", "retmax": "5"}'
)
nct_id_input = gr.Textbox(label="NCT ID for Article Search")
report_filename_input = gr.Textbox(
label="Report Filename",
placeholder="clinical_report.pdf",
value="clinical_report.pdf"
)
export_format = gr.Dropdown(["None", "CSV", "JSON"], label="Export Format")
# Outputs
output_text = gr.Textbox(label="Output", lines=10)
with gr.Row():
output_chart = gr.Plot(label="Visualization 1")
output_chart2 = gr.Plot(label="Visualization 2")
output_file = gr.File(label="Generated File")
submit_button = gr.Button("Submit")
# Async function for handling actions
async def handle_action(
action: str,
text: str,
file_up: gr.File,
translation_opt: str,
query_params: str,
nct_id: str,
report_filename: str,
export_format: str
) -> Tuple[Optional[str], Optional[Any], Optional[Any], Optional[str]]:
# Read the uploaded file
file_content = read_uploaded_file(file_up)
combined_text = (text + "\n" + file_content).strip() if file_content else text
# Branch by action
if action == "Summarize":
return summarize_text(combined_text), None, None, None
elif action == "Predict Outcome":
predictions = predict_outcome(combined_text)
if isinstance(predictions, dict):
chart = visualize_predictions(predictions)
return json.dumps(predictions, indent=2), chart, None, None
return predictions, None, None, None
elif action == "Generate Report":
file_path = generate_report(combined_text, filename=report_filename)
msg = f"Report generated: {file_path}" if file_path else "Report generation failed."
return msg, None, None, file_path
elif action == "Translate":
return translate_text(combined_text, translation_opt), None, None, None
elif action == "Perform Named Entity Recognition":
ner_result = perform_named_entity_recognition(combined_text)
return ner_result, None, None, None
elif action == "Perform Enhanced EDA":
# We expect the user to either upload a CSV or Excel, or paste CSV content.
if file_up is None and not combined_text:
return "No data provided for EDA.", None, None, None
# If Excel was uploaded
if file_up and file_up.name.lower().endswith((".xls", ".xlsx")):
try:
df_excel = parse_excel_file(file_up)
eda_summary, corr_chart, dist_chart = perform_enhanced_eda(df_excel)
return eda_summary, corr_chart, dist_chart, None
except Exception as e:
return f"Excel EDA failed: {e}", None, None, None
# If CSV was uploaded
if file_up and file_up.name.lower().endswith(".csv"):
try:
df_csv = parse_csv_content(file_content)
eda_summary, corr_chart, dist_chart = perform_enhanced_eda(df_csv)
return eda_summary, corr_chart, dist_chart, None
except Exception as e:
return f"CSV EDA failed: {e}", None, None, None
# If user just pasted CSV content (no file)
if not file_up and "," in combined_text:
try:
df_csv = parse_csv_content(combined_text)
eda_summary, corr_chart, dist_chart = perform_enhanced_eda(df_csv)
return eda_summary, corr_chart, dist_chart, None
except Exception as e:
return f"CSV EDA failed: {e}", None, None, None
# Otherwise, not supported
return "No valid CSV/Excel data found for EDA.", None, None, None
elif action == "Fetch Clinical Studies":
if nct_id:
result = await fetch_articles_by_nct_id(nct_id)
elif query_params:
result = await fetch_articles_by_query(query_params)
else:
return "Provide either an NCT ID or valid query parameters.", None, None, None
articles = result.get("resultList", {}).get("result", [])
if not articles:
return "No articles found.", None, None, None
formatted_results = "\n\n".join(
f"Title: {a.get('title')}\nJournal: {a.get('journalTitle')} ({a.get('pubYear')})"
for a in articles
)
return formatted_results, None, None, None
elif action in ["Fetch PubMed Articles (Legacy)", "Fetch PubMed by Query"]:
pubmed_result = await fetch_pubmed_by_query(query_params)
xml_data = pubmed_result.get("result")
if xml_data:
articles = parse_pubmed_xml(xml_data)
if not articles:
return "No articles found.", None, None, None
formatted = "\n\n".join(
f"{a['Title']} - {a['Journal']} ({a['PublicationDate']})"
for a in articles if a['Title']
)
return formatted if formatted else "No articles found.", None, None, None
return "No articles found or error fetching data.", None, None, None
elif action == "Fetch Crossref by Query":
crossref_result = await fetch_crossref_by_query(query_params)
items = crossref_result.get("message", {}).get("items", [])
if not items:
return "No results found.", None, None, None
formatted = "\n\n".join(
f"Title: {item.get('title', ['No title'])[0]}, DOI: {item.get('DOI')}"
for item in items
)
return formatted, None, None, None
return "Invalid action.", None, None, None
submit_button.click(
handle_action,
inputs=[
action,
text_input,
file_input,
translation_option,
query_params_input,
nct_id_input,
report_filename_input,
export_format,
],
outputs=[output_text, output_chart, output_chart2, output_file],
)
# Launch the Gradio app
demo.launch(server_name="0.0.0.0", server_port=7860, share=True)
|