mgbam's picture
Update app/app.py
2f96557 verified
raw
history blame
6.66 kB
"""
Sentinel TradeFlow Protocol β€” High-performance FastAPI application.
This is the main entry point that orchestrates the entire application.
- Integrates an asynchronous PriceFetcher for live market data.
- Integrates a sophisticated GeminiAnalyzer for deep text analysis.
- Implements an automated pipeline to fetch, analyze, and stream trading signals.
- Serves the interactive frontend and provides all necessary API endpoints.
"""
import asyncio
import json
import os
from contextlib import asynccontextmanager
from typing import Optional, Union
import httpx
from fastapi import FastAPI, Request
from fastapi.responses import HTMLResponse, StreamingResponse
from fastapi.templating import Jinja2Templates
# Use relative imports because these modules are in the same 'app' package.
from .price_fetcher import PriceFetcher
from .gemini_analyzer import GeminiAnalyzer
from newsapi import NewsApiClient
# --- Application Lifespan for Resource Management ---
@asynccontextmanager
async def lifespan(app: FastAPI):
"""
Manages application startup and shutdown events using the modern
lifespan context manager.
"""
async with httpx.AsyncClient() as client:
app.state.price_fetcher = PriceFetcher(client=client, coins=["bitcoin", "ethereum", "dogecoin"])
app.state.gemini_analyzer = GeminiAnalyzer(client=client)
app.state.news_api = NewsApiClient(api_key=os.getenv("NEWS_API_KEY"))
app.state.signal_queue: asyncio.Queue = asyncio.Queue()
# Create cancellable background tasks. Let's use a shorter timer for testing.
price_task = asyncio.create_task(
run_periodic_updates(app.state.price_fetcher, interval_seconds=60)
)
news_task = asyncio.create_task(
run_periodic_news_analysis(app, interval_seconds=300) # Check news every 5 minutes for debugging
)
print("πŸš€ Sentinel TradeFlow Protocol started successfully.")
yield
print("⏳ Shutting down background tasks...")
price_task.cancel()
news_task.cancel()
try:
await asyncio.gather(price_task, news_task)
except asyncio.CancelledError:
print("Background tasks cancelled successfully.")
print("βœ… Shutdown complete.")
async def run_periodic_updates(fetcher: PriceFetcher, interval_seconds: int):
"""A robust asyncio background task that periodically updates prices."""
while True:
await fetcher.update_prices_async()
await asyncio.sleep(interval_seconds)
async def run_periodic_news_analysis(app: FastAPI, interval_seconds: int):
"""Fetches, analyzes, and queues top crypto news periodically with detailed logging."""
while True:
print("πŸ“° [1/5] Fetching latest crypto news...")
try:
top_headlines = app.state.news_api.get_everything(
q='bitcoin OR ethereum OR "binance coin" OR solana OR ripple OR cardano',
language='en',
sort_by='publishedAt',
page_size=5
)
articles = top_headlines.get('articles', [])
print(f"πŸ“° [2/5] NewsAPI call successful. Found {len(articles)} articles.")
if not articles:
print("πŸ“° [SKIP] No new articles found in this cycle.")
await asyncio.sleep(interval_seconds)
continue
analyzer: GeminiAnalyzer = app.state.gemini_analyzer
for article in articles:
title = article.get('title')
print(f"πŸ“° [3/5] Processing article: '{title}'")
if not title or "[Removed]" in title:
print(f"πŸ“° [SKIP] Article has no title or was removed.")
continue
print(f"πŸ“° [4/5] Sending to Gemini for analysis...")
analysis = await analyzer.analyze_text(title)
if analysis.get("error"):
print(f"❌ [SKIP] Gemini analysis failed for '{title}'. Reason: {analysis.get('reason')}")
continue
analysis['url'] = article.get('url')
await app.state.signal_queue.put(analysis)
print(f"βœ… [5/5] Signal generated and queued for: '{title}'")
except Exception as e:
print(f"❌❌❌ CRITICAL ERROR in news analysis loop: {e}")
print(f"πŸ“° Loop finished. Waiting for {interval_seconds} seconds.")
await asyncio.sleep(interval_seconds)
# --- FastAPI App Initialization ---
app = FastAPI(title="Sentinel TradeFlow Protocol", lifespan=lifespan)
templates = Jinja2Templates(directory="templates")
# --- HTML Rendering Helper ---
def render_signal_card(payload: dict) -> str:
"""Renders a dictionary of analysis into a styled HTML card."""
s = payload
url = s.get('url', '#')
summary = s.get('summary', 'Analysis failed or not available.')
text_to_show = f'<a href="{url}" target="_blank" rel="noopener noreferrer">{summary}</a>'
impact_class = f"impact-{s.get('impact', 'low').lower()}"
sentiment_class = f"sentiment-{s.get('sentiment', 'neutral').lower()}"
return f"""
<div class="card {impact_class}">
<blockquote>{text_to_show}</blockquote>
<div class="grid">
<div><strong>Sentiment:</strong> <span class="{sentiment_class}">{s.get('sentiment')} ({s.get('sentiment_score', 0):.2f})</span></div>
<div><strong>Impact:</strong> {s.get('impact')}</div>
</div>
<div class="grid">
<div><strong>Topic:</strong> {s.get('topic')}</div>
<div><strong>Entities:</strong> {', '.join(s.get('entities', []))}</div>
</div>
</div>
"""
# --- API Endpoints ---
@app.get("/", response_class=HTMLResponse)
async def serve_dashboard(request: Request):
"""Serves the main interactive dashboard from `index.html`."""
return templates.TemplateResponse("index.html", {"request": request})
@app.get("/api/signals/stream")
async def signal_stream(request: Request):
"""SSE stream for the automated Signal Stream."""
queue: asyncio.Queue = request.app.state.signal_queue
async def event_generator():
while True:
payload = await queue.get()
html = render_signal_card(payload)
data_payload = html.replace('\n', '')
sse_message = f"event: message\ndata: {data_payload}\n\n"
yield sse_message
return StreamingResponse(event_generator(), media_type="text/event-stream")