DataBiz / app.py
mgbam's picture
Update app.py
57776e0 verified
raw
history blame
16.2 kB
# app.py
import streamlit as st
import numpy as np
import pandas as pd
from smolagents import CodeAgent, tool
from typing import Union, List, Dict, Optional
import matplotlib.pyplot as plt
import seaborn as sns
import os
from groq import Groq
from dataclasses import dataclass
import tempfile
import base64
import io
# ------------------------------
# Language Model Interface
# ------------------------------
class GroqLLM:
"""Compatible LLM interface for smolagents CodeAgent"""
def __init__(self, model_name: str = "llama-3.1-8B-Instant"):
"""
Initialize the GroqLLM with the specified model.
Args:
model_name (str): The name of the language model to use.
"""
self.client = Groq(api_key=os.environ.get("GROQ_API_KEY"))
self.model_name = model_name
def __call__(self, prompt: Union[str, dict, List[Dict]]) -> str:
"""
Make the class callable as required by smolagents.
Args:
prompt (Union[str, dict, List[Dict]]): The input prompt for the language model.
Returns:
str: The generated response from the language model.
"""
try:
# Handle different prompt formats
if isinstance(prompt, (dict, list)):
prompt_str = str(prompt)
else:
prompt_str = str(prompt)
# Create a properly formatted message
completion = self.client.chat.completions.create(
model=self.model_name,
messages=[{
"role": "user",
"content": prompt_str
}],
temperature=0.7,
max_tokens=1024,
stream=False
)
return completion.choices[0].message.content if completion.choices else "Error: No response generated"
except Exception as e:
error_msg = f"Error generating response: {str(e)}"
print(error_msg)
return error_msg
# ------------------------------
# Data Analysis Agent
# ------------------------------
class DataAnalysisAgent(CodeAgent):
"""Extended CodeAgent with dataset awareness"""
def __init__(self, dataset: pd.DataFrame, *args, **kwargs):
"""
Initialize the DataAnalysisAgent with the provided dataset.
Args:
dataset (pd.DataFrame): The dataset to analyze.
*args: Variable length argument list.
**kwargs: Arbitrary keyword arguments.
"""
super().__init__(*args, **kwargs)
self._dataset = dataset
@property
def dataset(self) -> pd.DataFrame:
"""Access the stored dataset."""
return self._dataset
def run(self, prompt: str) -> str:
"""
Override run method to include dataset context.
Args:
prompt (str): The task prompt for analysis.
Returns:
str: The result of the analysis.
"""
dataset_info = f"""
Dataset Shape: {self.dataset.shape}
Columns: {', '.join(self.dataset.columns)}
Data Types: {self.dataset.dtypes.to_dict()}
"""
enhanced_prompt = f"""
Analyze the following dataset:
{dataset_info}
Task: {prompt}
Use the provided tools to analyze this specific dataset and return detailed results.
"""
return super().run(enhanced_prompt)
# ------------------------------
# Tool Definitions
# ------------------------------
@tool
def analyze_basic_stats(data: Optional[pd.DataFrame] = None) -> str:
"""
Calculate basic statistical measures for numerical columns in the dataset.
This function computes fundamental statistical metrics including mean, median,
standard deviation, skewness, and counts of missing values for all numerical
columns in the provided DataFrame.
Args:
data (Optional[pd.DataFrame], optional):
A pandas DataFrame containing the dataset to analyze. The DataFrame
should contain at least one numerical column for meaningful analysis.
Returns:
str: A string containing formatted basic statistics for each numerical column,
including mean, median, standard deviation, skewness, and missing value counts.
"""
# Access dataset from agent if no data provided
if data is None:
data = tool.agent.dataset
stats = {}
numeric_cols = data.select_dtypes(include=[np.number]).columns
for col in numeric_cols:
stats[col] = {
'mean': float(data[col].mean()),
'median': float(data[col].median()),
'std': float(data[col].std()),
'skew': float(data[col].skew()),
'missing': int(data[col].isnull().sum())
}
return str(stats)
@tool
def generate_correlation_matrix(data: Optional[pd.DataFrame] = None) -> str:
"""
Generate a visual correlation matrix for numerical columns in the dataset.
This function creates a heatmap visualization showing the correlations between
all numerical columns in the dataset. The correlation values are displayed
using a color-coded matrix for easy interpretation.
Args:
data (Optional[pd.DataFrame], optional):
A pandas DataFrame containing the dataset to analyze. The DataFrame
should contain at least two numerical columns for correlation analysis.
Returns:
str: A base64 encoded string representing the correlation matrix plot image,
which can be displayed in a web interface or saved as an image file.
"""
# Access dataset from agent if no data provided
if data is None:
data = tool.agent.dataset
numeric_data = data.select_dtypes(include=[np.number])
plt.figure(figsize=(10, 8))
sns.heatmap(numeric_data.corr(), annot=True, cmap='coolwarm')
plt.title('Correlation Matrix')
buf = io.BytesIO()
plt.savefig(buf, format='png')
plt.close()
return base64.b64encode(buf.getvalue()).decode()
@tool
def analyze_categorical_columns(data: Optional[pd.DataFrame] = None) -> str:
"""
Analyze categorical columns in the dataset for distribution and frequencies.
This function examines categorical columns to identify unique values, top categories,
and missing value counts, providing insights into the categorical data distribution.
Args:
data (Optional[pd.DataFrame], optional):
A pandas DataFrame containing the dataset to analyze. The DataFrame
should contain at least one categorical column for meaningful analysis.
Returns:
str: A string containing formatted analysis results for each categorical column,
including unique value counts, top categories, and missing value counts.
"""
# Access dataset from agent if no data provided
if data is None:
data = tool.agent.dataset
categorical_cols = data.select_dtypes(include=['object', 'category']).columns
analysis = {}
for col in categorical_cols:
analysis[col] = {
'unique_values': int(data[col].nunique()),
'top_categories': data[col].value_counts().head(5).to_dict(),
'missing': int(data[col].isnull().sum())
}
return str(analysis)
@tool
def suggest_features(data: Optional[pd.DataFrame] = None) -> str:
"""
Suggest potential feature engineering steps based on data characteristics.
This function analyzes the dataset's structure and statistical properties to
recommend possible feature engineering steps that could improve model performance.
Args:
data (Optional[pd.DataFrame], optional):
A pandas DataFrame containing the dataset to analyze. The DataFrame
can contain both numerical and categorical columns.
Returns:
str: A string containing suggestions for feature engineering based on
the characteristics of the input data.
"""
# Access dataset from agent if no data provided
if data is None:
data = tool.agent.dataset
suggestions = []
numeric_cols = data.select_dtypes(include=[np.number]).columns
categorical_cols = data.select_dtypes(include=['object', 'category']).columns
if len(numeric_cols) >= 2:
suggestions.append("Consider creating interaction terms between numerical features")
if len(categorical_cols) > 0:
suggestions.append("Consider one-hot encoding for categorical variables")
for col in numeric_cols:
if data[col].skew() > 1 or data[col].skew() < -1:
suggestions.append(f"Consider log transformation for {col} due to skewness")
return '\n'.join(suggestions)
# ------------------------------
# Report Exporting Function
# ------------------------------
def export_report(content: str, filename: str):
"""
Export the given content as a PDF report.
This function converts markdown content into a PDF file using pdfkit and provides
a download button for users to obtain the report.
Args:
content (str): The markdown content to be included in the PDF report.
filename (str): The desired name for the exported PDF file.
Returns:
None
"""
# Save content to a temporary HTML file
with tempfile.NamedTemporaryFile(delete=False, suffix='.html') as tmp_file:
tmp_file.write(content.encode('utf-8'))
tmp_file_path = tmp_file.name
# Define output PDF path
pdf_path = f"{filename}.pdf"
# Convert HTML to PDF using pdfkit
try:
# Configure pdfkit options for HuggingFace Spaces environment
config = pdfkit.configuration()
pdfkit.from_file(tmp_file_path, pdf_path, configuration=config)
with open(pdf_path, "rb") as pdf_file:
PDFbyte = pdf_file.read()
# Provide download link
st.download_button(label="πŸ“₯ Download Report as PDF",
data=PDFbyte,
file_name=pdf_path,
mime='application/octet-stream')
except Exception as e:
st.error(f"⚠️ Error exporting report: {str(e)}")
finally:
os.remove(tmp_file_path)
if os.path.exists(pdf_path):
os.remove(pdf_path)
# ------------------------------
# Main Application Function
# ------------------------------
def main():
st.set_page_config(page_title="πŸ“Š Business Intelligence Assistant", layout="wide")
st.title("πŸ“Š **Business Intelligence Assistant**")
st.write("Upload your dataset and get automated analysis with natural language interaction.")
# Initialize session state
if 'data' not in st.session_state:
st.session_state['data'] = None
if 'agent' not in st.session_state:
st.session_state['agent'] = None
if 'report_content' not in st.session_state:
st.session_state['report_content'] = ""
uploaded_file = st.file_uploader("Choose a CSV file", type="csv")
try:
if uploaded_file is not None:
with st.spinner('πŸ”„ Loading and processing your data...'):
# Load the dataset
data = pd.read_csv(uploaded_file)
st.session_state['data'] = data
# Initialize the agent with the dataset
st.session_state['agent'] = DataAnalysisAgent(
dataset=data,
tools=[analyze_basic_stats, generate_correlation_matrix,
analyze_categorical_columns, suggest_features],
model=GroqLLM(),
additional_authorized_imports=["pandas", "numpy", "matplotlib", "seaborn"]
)
st.success(f'Successfully loaded dataset with {data.shape[0]} rows and {data.shape[1]} columns')
st.subheader("πŸ” **Data Preview**")
st.dataframe(data.head())
if st.session_state['data'] is not None:
analysis_type = st.selectbox(
"Choose analysis type",
["Basic Statistics", "Correlation Analysis", "Categorical Analysis",
"Feature Engineering", "Custom Question"]
)
if analysis_type == "Basic Statistics":
with st.spinner('Analyzing basic statistics...'):
result = st.session_state['agent'].run(
"Use the analyze_basic_stats tool to analyze this dataset and "
"provide insights about the numerical distributions."
)
st.write(result)
st.session_state['report_content'] += result + "\n\n"
elif analysis_type == "Correlation Analysis":
with st.spinner('Generating correlation matrix...'):
result = st.session_state['agent'].run(
"Use the generate_correlation_matrix tool to analyze correlations "
"and explain any strong relationships found."
)
if isinstance(result, str) and 'base64' in result:
# Extract base64 string and display the image
image_data = f"data:image/png;base64,{result}"
st.image(image_data, caption='Correlation Matrix')
else:
st.write(result)
st.session_state['report_content'] += "### Correlation Analysis\n" + result + "\n\n"
elif analysis_type == "Categorical Analysis":
with st.spinner('Analyzing categorical columns...'):
result = st.session_state['agent'].run(
"Use the analyze_categorical_columns tool to examine the "
"categorical variables and explain the distributions."
)
st.write(result)
st.session_state['report_content'] += "### Categorical Analysis\n" + result + "\n\n"
elif analysis_type == "Feature Engineering":
with st.spinner('Generating feature suggestions...'):
result = st.session_state['agent'].run(
"Use the suggest_features tool to recommend potential "
"feature engineering steps for this dataset."
)
st.write(result)
st.session_state['report_content'] += "### Feature Engineering Suggestions\n" + result + "\n\n"
elif analysis_type == "Custom Question":
question = st.text_input("What would you like to know about your data?")
if st.button("πŸ” Get Answer"):
if question:
with st.spinner('Analyzing...'):
result = st.session_state['agent'].run(question)
st.write(result)
st.session_state['report_content'] += f"### Custom Question: {question}\n{result}\n\n"
else:
st.warning("Please enter a question.")
# Option to Export Report
if st.session_state['report_content']:
st.markdown("---")
if st.button("πŸ“€ **Export Analysis Report**"):
export_report(st.session_state['report_content'], "Business_Intelligence_Report")
st.success("βœ… Report exported successfully!")
except Exception as e:
st.error(f"⚠️ An error occurred: {str(e)}")
# ------------------------------
# Application Entry Point
# ------------------------------
if __name__ == "__main__":
main()