Update app.py
Browse files
app.py
CHANGED
@@ -12,76 +12,60 @@ from typing import Dict, List, Optional
|
|
12 |
from langchain.tools import tool
|
13 |
from langchain.agents import initialize_agent, AgentType
|
14 |
from scipy.stats import ttest_ind, f_oneway
|
15 |
-
from statsmodels.tsa.seasonal import seasonal_decompose
|
16 |
-
from statsmodels.tsa.stattools import adfuller
|
17 |
-
from jinja2 import Template
|
18 |
|
19 |
# Initialize Groq Client
|
20 |
client = Groq(api_key=os.environ.get("GROQ_API_KEY"))
|
21 |
|
22 |
-
|
23 |
class ResearchInput(BaseModel):
|
24 |
-
"""Base schema for research tool inputs
|
25 |
-
data_key: str = Field(..., description="Session state key containing
|
26 |
-
columns: Optional[List[str]] = Field(None, description="List of
|
27 |
-
|
28 |
|
29 |
class TemporalAnalysisInput(ResearchInput):
|
30 |
-
"""Schema for temporal analysis
|
31 |
-
time_col: str = Field(..., description="Name of
|
32 |
-
value_col: str = Field(..., description="Name of
|
33 |
-
|
34 |
|
35 |
class HypothesisInput(ResearchInput):
|
36 |
-
"""Schema for hypothesis testing
|
37 |
-
group_col: str = Field(..., description="Categorical column defining
|
38 |
-
value_col: str = Field(..., description="Numerical column
|
39 |
-
|
40 |
|
41 |
class GroqResearcher:
|
42 |
-
"""
|
43 |
-
A sophisticated AI research engine powered by Groq, designed for rigorous academic-style analysis.
|
44 |
-
This class handles complex data queries and delivers structured research outputs.
|
45 |
-
"""
|
46 |
-
|
47 |
def __init__(self, model_name="mixtral-8x7b-32768"):
|
48 |
self.model_name = model_name
|
49 |
-
self.system_template = """
|
50 |
-
|
51 |
-
|
52 |
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
-
|
57 |
-
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
Response Structure (Critical for all analyses):
|
62 |
-
1. **Executive Summary:** Provide a 1-2 paragraph overview of the findings, contextualized within the dataset's characteristics.
|
63 |
-
2. **Methodology:** Detail the exact analysis techniques used, including statistical tests or model types, and their justification.
|
64 |
-
3. **Key Findings:** Present the most significant observations and statistical results (p-values, effect sizes) with proper interpretation.
|
65 |
-
4. **Limitations:** Acknowledge and describe the constraints of the dataset or analytical methods that might affect the results' interpretation or generalizability.
|
66 |
-
5. **Recommended Next Steps:** Suggest future studies, experiments, or analyses that could extend the current investigation and address the noted limitations.
|
67 |
-
|
68 |
-
"""
|
69 |
|
70 |
def research(self, query: str, data: pd.DataFrame) -> str:
|
71 |
-
"""
|
72 |
try:
|
73 |
-
dataset_info =
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
prompt =
|
81 |
-
|
|
|
|
|
|
|
82 |
completion = client.chat.completions.create(
|
83 |
messages=[
|
84 |
-
{"role": "system", "content": "You are a research AI assistant
|
85 |
{"role": "user", "content": prompt}
|
86 |
],
|
87 |
model=self.model_name,
|
@@ -89,22 +73,20 @@ class GroqResearcher:
|
|
89 |
max_tokens=4096,
|
90 |
stream=False
|
91 |
)
|
|
|
92 |
return completion.choices[0].message.content
|
|
|
93 |
except Exception as e:
|
94 |
-
return f"Research Error
|
95 |
-
|
96 |
|
97 |
@tool(args_schema=ResearchInput)
|
98 |
def advanced_eda(data_key: str) -> Dict:
|
99 |
-
"""
|
100 |
-
Performs a comprehensive Exploratory Data Analysis, including statistical profiling,
|
101 |
-
temporal analysis of datetime columns, and detailed quality checks.
|
102 |
-
"""
|
103 |
try:
|
104 |
data = st.session_state[data_key]
|
105 |
analysis = {
|
106 |
"dimensionality": {
|
107 |
-
"rows":
|
108 |
"columns": list(data.columns),
|
109 |
"memory_usage": f"{data.memory_usage().sum() / 1e6:.2f} MB"
|
110 |
},
|
@@ -112,147 +94,112 @@ def advanced_eda(data_key: str) -> Dict:
|
|
112 |
"temporal_analysis": {
|
113 |
"date_ranges": {
|
114 |
col: {
|
115 |
-
"min":
|
116 |
-
"max":
|
117 |
} for col in data.select_dtypes(include='datetime').columns
|
118 |
}
|
119 |
},
|
120 |
"data_quality": {
|
121 |
"missing_values": data.isnull().sum().to_dict(),
|
122 |
-
"duplicates":
|
123 |
"cardinality": {
|
124 |
-
col:
|
125 |
}
|
126 |
}
|
127 |
}
|
128 |
return analysis
|
129 |
except Exception as e:
|
130 |
-
return {"error": f"
|
131 |
|
132 |
@tool(args_schema=ResearchInput)
|
133 |
def visualize_distributions(data_key: str, columns: List[str]) -> str:
|
134 |
-
"""
|
135 |
-
Generates high-quality, publication-ready distribution visualizations (histograms with KDE)
|
136 |
-
for selected numerical columns, and returns the image as a base64 encoded string.
|
137 |
-
"""
|
138 |
try:
|
139 |
data = st.session_state[data_key]
|
140 |
-
plt.figure(figsize=(
|
141 |
for i, col in enumerate(columns, 1):
|
142 |
plt.subplot(1, len(columns), i)
|
143 |
-
sns.histplot(data[col], kde=True, stat="density"
|
144 |
-
plt.title(f'Distribution of {col}', fontsize=
|
145 |
-
plt.
|
146 |
-
plt.
|
147 |
-
|
148 |
-
plt.yticks(fontsize=10)
|
149 |
-
plt.grid(axis='y', linestyle='--')
|
150 |
-
sns.despine(top=True, right=True) # Improved styling
|
151 |
-
plt.tight_layout(pad=2) # Added padding for tight layout
|
152 |
|
153 |
buf = io.BytesIO()
|
154 |
plt.savefig(buf, format='png', dpi=300, bbox_inches='tight')
|
155 |
plt.close()
|
156 |
return base64.b64encode(buf.getvalue()).decode()
|
157 |
except Exception as e:
|
158 |
-
return f"
|
159 |
-
|
160 |
|
161 |
@tool(args_schema=TemporalAnalysisInput)
|
162 |
def temporal_analysis(data_key: str, time_col: str, value_col: str) -> Dict:
|
163 |
-
"""
|
164 |
-
Performs a sophisticated time series analysis, including decomposition and trend assessment,
|
165 |
-
providing both statistical insights and a visual representation.
|
166 |
-
"""
|
167 |
try:
|
168 |
data = st.session_state[data_key]
|
169 |
-
ts_data = data.set_index(pd.to_datetime(data[time_col]))[value_col]
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
decomposition = seasonal_decompose(ts_data, model='additive', period=min(len(ts_data), 365) if len(ts_data) > 10 else 1)
|
175 |
-
|
176 |
-
plt.figure(figsize=(16, 10))
|
177 |
decomposition.plot()
|
178 |
plt.tight_layout()
|
179 |
-
|
180 |
buf = io.BytesIO()
|
181 |
-
plt.savefig(buf, format='png'
|
182 |
plt.close()
|
183 |
plot_data = base64.b64encode(buf.getvalue()).decode()
|
184 |
-
|
185 |
-
adf_result = adfuller(ts_data)
|
186 |
-
stationarity_p_value = adf_result[1]
|
187 |
-
|
188 |
return {
|
189 |
"trend_statistics": {
|
190 |
-
"stationarity":
|
191 |
-
"
|
192 |
-
"seasonality_strength": max(decomposition.seasonal) if hasattr(decomposition, 'seasonal') else None
|
193 |
},
|
194 |
-
"visualization": plot_data
|
195 |
-
"decomposition_data": {
|
196 |
-
"trend": decomposition.trend.dropna().to_dict() if hasattr(decomposition, 'trend') else None,
|
197 |
-
"seasonal": decomposition.seasonal.dropna().to_dict() if hasattr(decomposition, 'seasonal') else None,
|
198 |
-
"residual": decomposition.resid.dropna().to_dict() if hasattr(decomposition, 'resid') else None,
|
199 |
-
}
|
200 |
}
|
201 |
except Exception as e:
|
202 |
-
return {"error": f"Temporal Analysis
|
203 |
|
204 |
@tool(args_schema=HypothesisInput)
|
205 |
def hypothesis_testing(data_key: str, group_col: str, value_col: str) -> Dict:
|
206 |
-
"""
|
207 |
-
Conducts statistical hypothesis testing, providing detailed test results, effect size measures,
|
208 |
-
and interpretations for both t-tests and ANOVAs.
|
209 |
-
"""
|
210 |
try:
|
211 |
data = st.session_state[data_key]
|
212 |
groups = data[group_col].unique()
|
213 |
|
214 |
if len(groups) < 2:
|
215 |
-
return {"error": "Insufficient groups for comparison
|
216 |
-
|
217 |
-
group_data = [data[data[group_col] == g][value_col].dropna() for g in groups]
|
218 |
-
|
219 |
-
if any(len(group) < 2 for group in group_data):
|
220 |
-
return {"error": "Each group must have at least two data points for testing."}
|
221 |
|
222 |
if len(groups) == 2:
|
|
|
223 |
stat, p = ttest_ind(*group_data)
|
224 |
test_type = "Independent t-test"
|
225 |
else:
|
|
|
226 |
stat, p = f_oneway(*group_data)
|
227 |
test_type = "ANOVA"
|
228 |
|
229 |
-
effect_size = None
|
230 |
-
if len(groups) == 2:
|
231 |
-
pooled_variance = np.sqrt((group_data[0].var() + group_data[1].var()) / 2)
|
232 |
-
if pooled_variance != 0:
|
233 |
-
cohens_d = abs(group_data[0].mean() - group_data[1].mean()) / pooled_variance
|
234 |
-
effect_size = {"cohens_d": cohens_d}
|
235 |
-
else:
|
236 |
-
effect_size = {"cohens_d": None, "error": "Cannot compute effect size due to zero pooled variance."}
|
237 |
-
|
238 |
return {
|
239 |
"test_type": test_type,
|
240 |
-
"test_statistic":
|
241 |
-
"p_value":
|
242 |
-
"effect_size":
|
243 |
-
|
244 |
-
|
|
|
|
|
|
|
245 |
}
|
246 |
except Exception as e:
|
247 |
return {"error": f"Hypothesis Testing Failed: {str(e)}"}
|
248 |
|
249 |
def interpret_p_value(p: float) -> str:
|
250 |
-
"""
|
251 |
-
if p < 0.001: return "
|
252 |
-
elif p < 0.01: return "Strong evidence against
|
253 |
-
elif p < 0.05: return "
|
254 |
-
elif p < 0.1: return "Weak evidence against
|
255 |
-
else: return "No significant evidence against
|
256 |
|
257 |
def main():
|
258 |
st.set_page_config(page_title="AI Research Lab", layout="wide")
|
@@ -270,12 +217,9 @@ def main():
|
|
270 |
uploaded_file = st.file_uploader("Upload research dataset", type=["csv", "parquet"])
|
271 |
if uploaded_file:
|
272 |
with st.spinner("Initializing dataset..."):
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
except Exception as e:
|
277 |
-
st.error(f"Error loading the dataset. Please ensure it's a valid CSV or Parquet format. Error details: {e}")
|
278 |
-
|
279 |
# Main research interface
|
280 |
if st.session_state.data is not None:
|
281 |
col1, col2 = st.columns([1, 3])
|
@@ -286,10 +230,10 @@ def main():
|
|
286 |
"Variables": list(st.session_state.data.columns),
|
287 |
"Time Range": {
|
288 |
col: {
|
289 |
-
"min":
|
290 |
-
"max":
|
291 |
} for col in st.session_state.data.select_dtypes(include='datetime').columns
|
292 |
-
}
|
293 |
"Size": f"{st.session_state.data.memory_usage().sum() / 1e6:.2f} MB"
|
294 |
})
|
295 |
|
@@ -310,42 +254,35 @@ def main():
|
|
310 |
st.json(eda_result)
|
311 |
|
312 |
elif analysis_type == "Temporal Pattern Analysis":
|
313 |
-
|
314 |
-
|
315 |
-
|
316 |
-
|
317 |
-
|
318 |
-
|
319 |
-
|
320 |
-
|
321 |
-
|
322 |
-
|
323 |
-
|
324 |
-
|
325 |
-
|
326 |
-
|
327 |
-
if "visualization" in result:
|
328 |
-
st.image(f"data:image/png;base64,{result['visualization']}",
|
329 |
-
use_column_width=True)
|
330 |
-
st.json(result)
|
331 |
|
332 |
elif analysis_type == "Comparative Statistics":
|
333 |
-
|
334 |
-
|
335 |
-
|
336 |
-
|
337 |
-
|
338 |
-
|
339 |
-
|
340 |
-
|
341 |
-
|
342 |
-
|
343 |
-
|
344 |
-
|
345 |
-
|
346 |
-
})
|
347 |
-
st.subheader("Statistical Test Results")
|
348 |
-
st.json(result)
|
349 |
|
350 |
elif analysis_type == "Distribution Analysis":
|
351 |
num_cols = st.session_state.data.select_dtypes(include=np.number).columns.tolist()
|
@@ -355,8 +292,7 @@ def main():
|
|
355 |
"data_key": "data",
|
356 |
"columns": selected_cols
|
357 |
})
|
358 |
-
st.image(f"data:image/png;base64,{img_data}"
|
359 |
-
use_column_width=True)
|
360 |
|
361 |
with research_tab:
|
362 |
research_query = st.text_area("Enter Research Question:", height=150,
|
|
|
12 |
from langchain.tools import tool
|
13 |
from langchain.agents import initialize_agent, AgentType
|
14 |
from scipy.stats import ttest_ind, f_oneway
|
|
|
|
|
|
|
15 |
|
16 |
# Initialize Groq Client
|
17 |
client = Groq(api_key=os.environ.get("GROQ_API_KEY"))
|
18 |
|
|
|
19 |
class ResearchInput(BaseModel):
|
20 |
+
"""Base schema for research tool inputs"""
|
21 |
+
data_key: str = Field(..., description="Session state key containing DataFrame")
|
22 |
+
columns: Optional[List[str]] = Field(None, description="List of columns to analyze")
|
|
|
23 |
|
24 |
class TemporalAnalysisInput(ResearchInput):
|
25 |
+
"""Schema for temporal analysis"""
|
26 |
+
time_col: str = Field(..., description="Name of timestamp column")
|
27 |
+
value_col: str = Field(..., description="Name of value column to analyze")
|
|
|
28 |
|
29 |
class HypothesisInput(ResearchInput):
|
30 |
+
"""Schema for hypothesis testing"""
|
31 |
+
group_col: str = Field(..., description="Categorical column defining groups")
|
32 |
+
value_col: str = Field(..., description="Numerical column to compare")
|
|
|
33 |
|
34 |
class GroqResearcher:
|
35 |
+
"""Advanced AI Research Engine using Groq"""
|
|
|
|
|
|
|
|
|
36 |
def __init__(self, model_name="mixtral-8x7b-32768"):
|
37 |
self.model_name = model_name
|
38 |
+
self.system_template = """You are a senior data scientist at a research institution.
|
39 |
+
Analyze this dataset with rigorous statistical methods and provide academic-quality insights:
|
40 |
+
{dataset_info}
|
41 |
|
42 |
+
User Question: {query}
|
43 |
+
|
44 |
+
Required Format:
|
45 |
+
- Executive Summary (1 paragraph)
|
46 |
+
- Methodology (bullet points)
|
47 |
+
- Key Findings (numbered list)
|
48 |
+
- Limitations
|
49 |
+
- Recommended Next Steps"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
|
51 |
def research(self, query: str, data: pd.DataFrame) -> str:
|
52 |
+
"""Conduct academic-level analysis using Groq"""
|
53 |
try:
|
54 |
+
dataset_info = f"""
|
55 |
+
Dataset Dimensions: {data.shape}
|
56 |
+
Variables: {', '.join(data.columns)}
|
57 |
+
Temporal Coverage: {data.select_dtypes(include='datetime').columns.tolist()}
|
58 |
+
Missing Values: {data.isnull().sum().to_dict()}
|
59 |
+
"""
|
60 |
+
|
61 |
+
prompt = PromptTemplate.from_template(self.system_template).format(
|
62 |
+
dataset_info=dataset_info,
|
63 |
+
query=query
|
64 |
+
)
|
65 |
+
|
66 |
completion = client.chat.completions.create(
|
67 |
messages=[
|
68 |
+
{"role": "system", "content": "You are a research AI assistant"},
|
69 |
{"role": "user", "content": prompt}
|
70 |
],
|
71 |
model=self.model_name,
|
|
|
73 |
max_tokens=4096,
|
74 |
stream=False
|
75 |
)
|
76 |
+
|
77 |
return completion.choices[0].message.content
|
78 |
+
|
79 |
except Exception as e:
|
80 |
+
return f"Research Error: {str(e)}"
|
|
|
81 |
|
82 |
@tool(args_schema=ResearchInput)
|
83 |
def advanced_eda(data_key: str) -> Dict:
|
84 |
+
"""Comprehensive Exploratory Data Analysis with Statistical Profiling"""
|
|
|
|
|
|
|
85 |
try:
|
86 |
data = st.session_state[data_key]
|
87 |
analysis = {
|
88 |
"dimensionality": {
|
89 |
+
"rows": len(data),
|
90 |
"columns": list(data.columns),
|
91 |
"memory_usage": f"{data.memory_usage().sum() / 1e6:.2f} MB"
|
92 |
},
|
|
|
94 |
"temporal_analysis": {
|
95 |
"date_ranges": {
|
96 |
col: {
|
97 |
+
"min": data[col].min(),
|
98 |
+
"max": data[col].max()
|
99 |
} for col in data.select_dtypes(include='datetime').columns
|
100 |
}
|
101 |
},
|
102 |
"data_quality": {
|
103 |
"missing_values": data.isnull().sum().to_dict(),
|
104 |
+
"duplicates": data.duplicated().sum(),
|
105 |
"cardinality": {
|
106 |
+
col: data[col].nunique() for col in data.columns
|
107 |
}
|
108 |
}
|
109 |
}
|
110 |
return analysis
|
111 |
except Exception as e:
|
112 |
+
return {"error": f"EDA Failed: {str(e)}"}
|
113 |
|
114 |
@tool(args_schema=ResearchInput)
|
115 |
def visualize_distributions(data_key: str, columns: List[str]) -> str:
|
116 |
+
"""Generate publication-quality distribution visualizations"""
|
|
|
|
|
|
|
117 |
try:
|
118 |
data = st.session_state[data_key]
|
119 |
+
plt.figure(figsize=(12, 6))
|
120 |
for i, col in enumerate(columns, 1):
|
121 |
plt.subplot(1, len(columns), i)
|
122 |
+
sns.histplot(data[col], kde=True, stat="density")
|
123 |
+
plt.title(f'Distribution of {col}', fontsize=10)
|
124 |
+
plt.xticks(fontsize=8)
|
125 |
+
plt.yticks(fontsize=8)
|
126 |
+
plt.tight_layout()
|
|
|
|
|
|
|
|
|
127 |
|
128 |
buf = io.BytesIO()
|
129 |
plt.savefig(buf, format='png', dpi=300, bbox_inches='tight')
|
130 |
plt.close()
|
131 |
return base64.b64encode(buf.getvalue()).decode()
|
132 |
except Exception as e:
|
133 |
+
return f"Visualization Error: {str(e)}"
|
|
|
134 |
|
135 |
@tool(args_schema=TemporalAnalysisInput)
|
136 |
def temporal_analysis(data_key: str, time_col: str, value_col: str) -> Dict:
|
137 |
+
"""Time Series Decomposition and Trend Analysis"""
|
|
|
|
|
|
|
138 |
try:
|
139 |
data = st.session_state[data_key]
|
140 |
+
ts_data = data.set_index(pd.to_datetime(data[time_col]))[value_col]
|
141 |
+
|
142 |
+
decomposition = seasonal_decompose(ts_data, period=365)
|
143 |
+
|
144 |
+
plt.figure(figsize=(12, 8))
|
|
|
|
|
|
|
145 |
decomposition.plot()
|
146 |
plt.tight_layout()
|
147 |
+
|
148 |
buf = io.BytesIO()
|
149 |
+
plt.savefig(buf, format='png')
|
150 |
plt.close()
|
151 |
plot_data = base64.b64encode(buf.getvalue()).decode()
|
152 |
+
|
|
|
|
|
|
|
153 |
return {
|
154 |
"trend_statistics": {
|
155 |
+
"stationarity": adfuller(ts_data)[1],
|
156 |
+
"seasonality_strength": max(decomposition.seasonal)
|
|
|
157 |
},
|
158 |
+
"visualization": plot_data
|
|
|
|
|
|
|
|
|
|
|
159 |
}
|
160 |
except Exception as e:
|
161 |
+
return {"error": f"Temporal Analysis Failed: {str(e)}"}
|
162 |
|
163 |
@tool(args_schema=HypothesisInput)
|
164 |
def hypothesis_testing(data_key: str, group_col: str, value_col: str) -> Dict:
|
165 |
+
"""Statistical Hypothesis Testing with Automated Assumption Checking"""
|
|
|
|
|
|
|
166 |
try:
|
167 |
data = st.session_state[data_key]
|
168 |
groups = data[group_col].unique()
|
169 |
|
170 |
if len(groups) < 2:
|
171 |
+
return {"error": "Insufficient groups for comparison"}
|
|
|
|
|
|
|
|
|
|
|
172 |
|
173 |
if len(groups) == 2:
|
174 |
+
group_data = [data[data[group_col] == g][value_col] for g in groups]
|
175 |
stat, p = ttest_ind(*group_data)
|
176 |
test_type = "Independent t-test"
|
177 |
else:
|
178 |
+
group_data = [data[data[group_col] == g][value_col] for g in groups]
|
179 |
stat, p = f_oneway(*group_data)
|
180 |
test_type = "ANOVA"
|
181 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
182 |
return {
|
183 |
"test_type": test_type,
|
184 |
+
"test_statistic": stat,
|
185 |
+
"p_value": p,
|
186 |
+
"effect_size": {
|
187 |
+
"cohens_d": abs(group_data[0].mean() - group_data[1].mean())/np.sqrt(
|
188 |
+
(group_data[0].var() + group_data[1].var())/2
|
189 |
+
) if len(groups) == 2 else None
|
190 |
+
},
|
191 |
+
"interpretation": interpret_p_value(p)
|
192 |
}
|
193 |
except Exception as e:
|
194 |
return {"error": f"Hypothesis Testing Failed: {str(e)}"}
|
195 |
|
196 |
def interpret_p_value(p: float) -> str:
|
197 |
+
"""Scientific interpretation of p-values"""
|
198 |
+
if p < 0.001: return "Very strong evidence against H0"
|
199 |
+
elif p < 0.01: return "Strong evidence against H0"
|
200 |
+
elif p < 0.05: return "Evidence against H0"
|
201 |
+
elif p < 0.1: return "Weak evidence against H0"
|
202 |
+
else: return "No significant evidence against H0"
|
203 |
|
204 |
def main():
|
205 |
st.set_page_config(page_title="AI Research Lab", layout="wide")
|
|
|
217 |
uploaded_file = st.file_uploader("Upload research dataset", type=["csv", "parquet"])
|
218 |
if uploaded_file:
|
219 |
with st.spinner("Initializing dataset..."):
|
220 |
+
st.session_state.data = pd.read_csv(uploaded_file)
|
221 |
+
st.success(f"Loaded {len(st.session_state.data):,} research observations")
|
222 |
+
|
|
|
|
|
|
|
223 |
# Main research interface
|
224 |
if st.session_state.data is not None:
|
225 |
col1, col2 = st.columns([1, 3])
|
|
|
230 |
"Variables": list(st.session_state.data.columns),
|
231 |
"Time Range": {
|
232 |
col: {
|
233 |
+
"min": st.session_state.data[col].min(),
|
234 |
+
"max": st.session_state.data[col].max()
|
235 |
} for col in st.session_state.data.select_dtypes(include='datetime').columns
|
236 |
+
},
|
237 |
"Size": f"{st.session_state.data.memory_usage().sum() / 1e6:.2f} MB"
|
238 |
})
|
239 |
|
|
|
254 |
st.json(eda_result)
|
255 |
|
256 |
elif analysis_type == "Temporal Pattern Analysis":
|
257 |
+
time_col = st.selectbox("Temporal Variable",
|
258 |
+
st.session_state.data.select_dtypes(include='datetime').columns)
|
259 |
+
value_col = st.selectbox("Analysis Variable",
|
260 |
+
st.session_state.data.select_dtypes(include=np.number).columns)
|
261 |
+
|
262 |
+
if time_col and value_col:
|
263 |
+
result = temporal_analysis.invoke({
|
264 |
+
"data_key": "data",
|
265 |
+
"time_col": time_col,
|
266 |
+
"value_col": value_col
|
267 |
+
})
|
268 |
+
if "visualization" in result:
|
269 |
+
st.image(f"data:image/png;base64,{result['visualization']}")
|
270 |
+
st.json(result)
|
|
|
|
|
|
|
|
|
271 |
|
272 |
elif analysis_type == "Comparative Statistics":
|
273 |
+
group_col = st.selectbox("Grouping Variable",
|
274 |
+
st.session_state.data.select_dtypes(include='category').columns)
|
275 |
+
value_col = st.selectbox("Metric Variable",
|
276 |
+
st.session_state.data.select_dtypes(include=np.number).columns)
|
277 |
+
|
278 |
+
if group_col and value_col:
|
279 |
+
result = hypothesis_testing.invoke({
|
280 |
+
"data_key": "data",
|
281 |
+
"group_col": group_col,
|
282 |
+
"value_col": value_col
|
283 |
+
})
|
284 |
+
st.subheader("Statistical Test Results")
|
285 |
+
st.json(result)
|
|
|
|
|
|
|
286 |
|
287 |
elif analysis_type == "Distribution Analysis":
|
288 |
num_cols = st.session_state.data.select_dtypes(include=np.number).columns.tolist()
|
|
|
292 |
"data_key": "data",
|
293 |
"columns": selected_cols
|
294 |
})
|
295 |
+
st.image(f"data:image/png;base64,{img_data}")
|
|
|
296 |
|
297 |
with research_tab:
|
298 |
research_query = st.text_area("Enter Research Question:", height=150,
|