Add application file
Browse files
app.py
ADDED
@@ -0,0 +1,483 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# app.py
|
2 |
+
|
3 |
+
import streamlit as st
|
4 |
+
import numpy as np
|
5 |
+
import pandas as pd
|
6 |
+
from smolagents import CodeAgent, tool
|
7 |
+
from typing import Union, List, Dict, Optional
|
8 |
+
import matplotlib.pyplot as plt
|
9 |
+
import seaborn as sns
|
10 |
+
import plotly.express as px
|
11 |
+
import plotly.graph_objects as go
|
12 |
+
import os
|
13 |
+
from groq import Groq
|
14 |
+
from dataclasses import dataclass
|
15 |
+
import tempfile
|
16 |
+
import base64
|
17 |
+
import io
|
18 |
+
from sklearn.model_selection import train_test_split
|
19 |
+
from sklearn.metrics import classification_report, confusion_matrix, roc_curve, auc
|
20 |
+
import joblib
|
21 |
+
import pdfkit # Ensure wkhtmltopdf is available in the environment
|
22 |
+
import uuid # For generating unique report IDs
|
23 |
+
|
24 |
+
# ------------------------------
|
25 |
+
# Language Model Interface
|
26 |
+
# ------------------------------
|
27 |
+
class GroqLLM:
|
28 |
+
"""Enhanced LLM interface with support for generating natural language summaries."""
|
29 |
+
def __init__(self, model_name="llama-3.1-8B-Instant"):
|
30 |
+
self.client = Groq(api_key=os.environ.get("GROQ_API_KEY"))
|
31 |
+
self.model_name = model_name
|
32 |
+
|
33 |
+
def __call__(self, prompt: Union[str, dict, List[Dict]]) -> str:
|
34 |
+
"""Make the class callable as required by smolagents"""
|
35 |
+
try:
|
36 |
+
# Handle different prompt formats
|
37 |
+
if isinstance(prompt, (dict, list)):
|
38 |
+
prompt_str = str(prompt)
|
39 |
+
else:
|
40 |
+
prompt_str = str(prompt)
|
41 |
+
|
42 |
+
# Create a properly formatted message
|
43 |
+
completion = self.client.chat.completions.create(
|
44 |
+
model=self.model_name,
|
45 |
+
messages=[{
|
46 |
+
"role": "user",
|
47 |
+
"content": prompt_str
|
48 |
+
}],
|
49 |
+
temperature=0.7,
|
50 |
+
max_tokens=1500, # Increased tokens for detailed responses
|
51 |
+
stream=False
|
52 |
+
)
|
53 |
+
|
54 |
+
return completion.choices[0].message.content if completion.choices else "Error: No response generated"
|
55 |
+
|
56 |
+
except Exception as e:
|
57 |
+
error_msg = f"Error generating response: {str(e)}"
|
58 |
+
print(error_msg)
|
59 |
+
return error_msg
|
60 |
+
|
61 |
+
# ------------------------------
|
62 |
+
# Data Analysis Agent
|
63 |
+
# ------------------------------
|
64 |
+
class DataAnalysisAgent(CodeAgent):
|
65 |
+
"""Extended CodeAgent with dataset awareness and predictive analytics capabilities."""
|
66 |
+
def __init__(self, dataset: pd.DataFrame, *args, **kwargs):
|
67 |
+
super().__init__(*args, **kwargs)
|
68 |
+
self._dataset = dataset
|
69 |
+
self.models = {} # To store trained models
|
70 |
+
|
71 |
+
@property
|
72 |
+
def dataset(self) -> pd.DataFrame:
|
73 |
+
"""Access the stored dataset"""
|
74 |
+
return self._dataset
|
75 |
+
|
76 |
+
def run(self, prompt: str) -> str:
|
77 |
+
"""Override run method to include dataset context and support predictive tasks"""
|
78 |
+
dataset_info = f"""
|
79 |
+
Dataset Shape: {self.dataset.shape}
|
80 |
+
Columns: {', '.join(self.dataset.columns)}
|
81 |
+
Data Types: {self.dataset.dtypes.to_dict()}
|
82 |
+
"""
|
83 |
+
enhanced_prompt = f"""
|
84 |
+
Analyze the following dataset:
|
85 |
+
{dataset_info}
|
86 |
+
|
87 |
+
Task: {prompt}
|
88 |
+
|
89 |
+
Use the provided tools to analyze this specific dataset and return detailed results.
|
90 |
+
"""
|
91 |
+
return super().run(enhanced_prompt)
|
92 |
+
|
93 |
+
# ------------------------------
|
94 |
+
# Tool Definitions
|
95 |
+
# ------------------------------
|
96 |
+
|
97 |
+
@tool
|
98 |
+
def analyze_basic_stats(data: pd.DataFrame) -> str:
|
99 |
+
"""Calculate and visualize basic statistical measures for numerical columns."""
|
100 |
+
if data is None:
|
101 |
+
data = tool.agent.dataset
|
102 |
+
|
103 |
+
stats = {}
|
104 |
+
numeric_cols = data.select_dtypes(include=[np.number]).columns
|
105 |
+
|
106 |
+
for col in numeric_cols:
|
107 |
+
stats[col] = {
|
108 |
+
'mean': float(data[col].mean()),
|
109 |
+
'median': float(data[col].median()),
|
110 |
+
'std': float(data[col].std()),
|
111 |
+
'skew': float(data[col].skew()),
|
112 |
+
'missing': int(data[col].isnull().sum())
|
113 |
+
}
|
114 |
+
|
115 |
+
# Generate a summary DataFrame
|
116 |
+
stats_df = pd.DataFrame(stats).T
|
117 |
+
stats_df.reset_index(inplace=True)
|
118 |
+
stats_df.rename(columns={'index': 'Feature'}, inplace=True)
|
119 |
+
|
120 |
+
# Plotting basic statistics
|
121 |
+
fig, ax = plt.subplots(figsize=(10, 6))
|
122 |
+
stats_df.set_index('Feature')[['mean', 'median', 'std']].plot(kind='bar', ax=ax)
|
123 |
+
plt.title('Basic Statistics')
|
124 |
+
plt.ylabel('Values')
|
125 |
+
plt.tight_layout()
|
126 |
+
|
127 |
+
# Save plot to buffer
|
128 |
+
buf = io.BytesIO()
|
129 |
+
plt.savefig(buf, format='png')
|
130 |
+
plt.close()
|
131 |
+
stats_plot = base64.b64encode(buf.getvalue()).decode()
|
132 |
+
|
133 |
+
return f"### Basic Statistics\n{stats_df.to_markdown()} \n\n"
|
134 |
+
|
135 |
+
@tool
|
136 |
+
def generate_correlation_matrix(data: pd.DataFrame) -> str:
|
137 |
+
"""Generate an interactive correlation matrix using Plotly."""
|
138 |
+
if data is None:
|
139 |
+
data = tool.agent.dataset
|
140 |
+
|
141 |
+
numeric_data = data.select_dtypes(include=[np.number])
|
142 |
+
corr = numeric_data.corr()
|
143 |
+
|
144 |
+
fig = px.imshow(corr,
|
145 |
+
text_auto=True,
|
146 |
+
aspect="auto",
|
147 |
+
color_continuous_scale='RdBu',
|
148 |
+
title='Correlation Matrix')
|
149 |
+
|
150 |
+
fig.update_layout(width=800, height=600)
|
151 |
+
|
152 |
+
# Convert Plotly figure to HTML div
|
153 |
+
correlation_html = fig.to_html(full_html=False)
|
154 |
+
|
155 |
+
return correlation_html
|
156 |
+
|
157 |
+
@tool
|
158 |
+
def analyze_categorical_columns(data: pd.DataFrame) -> str:
|
159 |
+
"""Analyze categorical columns with visualizations."""
|
160 |
+
if data is None:
|
161 |
+
data = tool.agent.dataset
|
162 |
+
|
163 |
+
categorical_cols = data.select_dtypes(include=['object', 'category']).columns
|
164 |
+
analysis = {}
|
165 |
+
plots = ""
|
166 |
+
|
167 |
+
for col in categorical_cols:
|
168 |
+
unique_vals = data[col].nunique()
|
169 |
+
top_categories = data[col].value_counts().head(5).to_dict()
|
170 |
+
missing = data[col].isnull().sum()
|
171 |
+
|
172 |
+
analysis[col] = {
|
173 |
+
'unique_values': int(unique_vals),
|
174 |
+
'top_categories': top_categories,
|
175 |
+
'missing': int(missing)
|
176 |
+
}
|
177 |
+
|
178 |
+
# Generate bar chart for top categories
|
179 |
+
fig, ax = plt.subplots(figsize=(8, 4))
|
180 |
+
sns.countplot(data=data, x=col, order=data[col].value_counts().iloc[:5].index, ax=ax)
|
181 |
+
plt.title(f'Top 5 Categories in {col}')
|
182 |
+
plt.xticks(rotation=45)
|
183 |
+
plt.tight_layout()
|
184 |
+
|
185 |
+
buf = io.BytesIO()
|
186 |
+
plt.savefig(buf, format='png')
|
187 |
+
plt.close()
|
188 |
+
plot_img = base64.b64encode(buf.getvalue()).decode()
|
189 |
+
|
190 |
+
plots += f"### {col}\n"
|
191 |
+
plots += f"- **Unique Values:** {unique_vals}\n"
|
192 |
+
plots += f"- **Missing Values:** {missing}\n"
|
193 |
+
plots += f"- **Top Categories:** {top_categories}\n"
|
194 |
+
plots += f"\n\n"
|
195 |
+
|
196 |
+
return plots + f"### Categorical Columns Analysis\n{pd.DataFrame(analysis).T.to_markdown()}"
|
197 |
+
|
198 |
+
@tool
|
199 |
+
def suggest_features(data: pd.DataFrame) -> str:
|
200 |
+
"""Suggest potential feature engineering steps based on data characteristics."""
|
201 |
+
if data is None:
|
202 |
+
data = tool.agent.dataset
|
203 |
+
|
204 |
+
suggestions = []
|
205 |
+
numeric_cols = data.select_dtypes(include=[np.number]).columns
|
206 |
+
categorical_cols = data.select_dtypes(include=['object', 'category']).columns
|
207 |
+
|
208 |
+
# Interaction terms
|
209 |
+
if len(numeric_cols) >= 2:
|
210 |
+
suggestions.append("โข **Interaction Terms:** Consider creating interaction terms between numerical features to capture combined effects.")
|
211 |
+
|
212 |
+
# Encoding categorical variables
|
213 |
+
if len(categorical_cols) > 0:
|
214 |
+
suggestions.append("โข **One-Hot Encoding:** Apply one-hot encoding to categorical variables to convert them into numerical format.")
|
215 |
+
suggestions.append("โข **Label Encoding:** For ordinal categorical variables, consider label encoding to maintain order information.")
|
216 |
+
|
217 |
+
# Handling skewness
|
218 |
+
for col in numeric_cols:
|
219 |
+
if data[col].skew() > 1 or data[col].skew() < -1:
|
220 |
+
suggestions.append(f"โข **Log Transformation:** Apply log transformation to `{col}` to reduce skewness and stabilize variance.")
|
221 |
+
|
222 |
+
# Missing value imputation
|
223 |
+
for col in data.columns:
|
224 |
+
if data[col].isnull().sum() > 0:
|
225 |
+
suggestions.append(f"โข **Imputation:** Consider imputing missing values in `{col}` using mean, median, or advanced imputation techniques.")
|
226 |
+
|
227 |
+
# Feature scaling
|
228 |
+
suggestions.append("โข **Feature Scaling:** Apply feature scaling (Standardization or Normalization) to numerical features to ensure uniformity.")
|
229 |
+
|
230 |
+
return "\n".join(suggestions)
|
231 |
+
|
232 |
+
@tool
|
233 |
+
def predictive_analysis(data: pd.DataFrame, target: str) -> str:
|
234 |
+
"""Perform predictive analytics by training a classification model."""
|
235 |
+
if data is None:
|
236 |
+
data = tool.agent.dataset
|
237 |
+
|
238 |
+
if target not in data.columns:
|
239 |
+
return f"Error: Target column `{target}` not found in the dataset."
|
240 |
+
|
241 |
+
# Handle categorical target
|
242 |
+
if data[target].dtype == 'object' or data[target].dtype.name == 'category':
|
243 |
+
data[target] = data[target].astype('category').cat.codes
|
244 |
+
|
245 |
+
# Drop rows with missing target
|
246 |
+
data = data.dropna(subset=[target])
|
247 |
+
|
248 |
+
# Separate features and target
|
249 |
+
X = data.drop(columns=[target])
|
250 |
+
y = data[target]
|
251 |
+
|
252 |
+
# Handle missing values (simple imputation)
|
253 |
+
X = X.fillna(X.median())
|
254 |
+
|
255 |
+
# Encode categorical variables
|
256 |
+
X = pd.get_dummies(X, drop_first=True)
|
257 |
+
|
258 |
+
# Split data
|
259 |
+
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
|
260 |
+
|
261 |
+
# Train a Random Forest Classifier (as an example)
|
262 |
+
from sklearn.ensemble import RandomForestClassifier
|
263 |
+
clf = RandomForestClassifier(n_estimators=100, random_state=42)
|
264 |
+
clf.fit(X_train, y_train)
|
265 |
+
|
266 |
+
# Predictions
|
267 |
+
y_pred = clf.predict(X_test)
|
268 |
+
y_proba = clf.predict_proba(X_test)[:,1]
|
269 |
+
|
270 |
+
# Evaluation
|
271 |
+
report = classification_report(y_test, y_pred, output_dict=True)
|
272 |
+
report_df = pd.DataFrame(report).transpose()
|
273 |
+
|
274 |
+
# Confusion Matrix
|
275 |
+
cm = confusion_matrix(y_test, y_pred)
|
276 |
+
fig_cm = px.imshow(cm, text_auto=True, labels=dict(x="Predicted", y="Actual", color="Count"),
|
277 |
+
x=["Negative", "Positive"], y=["Negative", "Positive"],
|
278 |
+
title="Confusion Matrix")
|
279 |
+
|
280 |
+
# ROC Curve
|
281 |
+
fpr, tpr, thresholds = roc_curve(y_test, y_proba)
|
282 |
+
roc_auc = auc(fpr, tpr)
|
283 |
+
fig_roc = go.Figure()
|
284 |
+
fig_roc.add_trace(go.Scatter(x=fpr, y=tpr, mode='lines', name=f'ROC Curve (AUC = {roc_auc:.2f})'))
|
285 |
+
fig_roc.add_trace(go.Scatter(x=[0,1], y=[0,1], mode='lines', name='Random Guess', line=dict(dash='dash')))
|
286 |
+
fig_roc.update_layout(title='Receiver Operating Characteristic (ROC) Curve',
|
287 |
+
xaxis_title='False Positive Rate',
|
288 |
+
yaxis_title='True Positive Rate')
|
289 |
+
|
290 |
+
# Save models for potential future use
|
291 |
+
model_id = str(uuid.uuid4())
|
292 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix='.joblib') as tmp_model_file:
|
293 |
+
joblib.dump(clf, tmp_model_file.name)
|
294 |
+
# In a real-world scenario, you'd store this in a persistent storage
|
295 |
+
tool.agent.models[model_id] = clf # Storing in agent's models dict
|
296 |
+
|
297 |
+
# Generate HTML for plots
|
298 |
+
cm_html = fig_cm.to_html(full_html=False)
|
299 |
+
roc_html = fig_roc.to_html(full_html=False)
|
300 |
+
|
301 |
+
# Generate report summary
|
302 |
+
summary = f"""
|
303 |
+
### Predictive Analytics Report for Target: `{target}`
|
304 |
+
|
305 |
+
**Model Used:** Random Forest Classifier
|
306 |
+
|
307 |
+
**Classification Report:**
|
308 |
+
{report_df.to_markdown()}
|
309 |
+
|
310 |
+
**Confusion Matrix:**
|
311 |
+
{cm_html}
|
312 |
+
|
313 |
+
**ROC Curve:**
|
314 |
+
{roc_html}
|
315 |
+
|
316 |
+
**AUC Score:** {roc_auc:.2f}
|
317 |
+
|
318 |
+
**Model ID:** `{model_id}`
|
319 |
+
|
320 |
+
*You can use this Model ID to retrieve or update the model in future analyses.*
|
321 |
+
"""
|
322 |
+
|
323 |
+
return summary
|
324 |
+
|
325 |
+
# ------------------------------
|
326 |
+
# Report Exporting Function
|
327 |
+
# ------------------------------
|
328 |
+
def export_report(content: str, filename: str):
|
329 |
+
"""Export the given content as a PDF report."""
|
330 |
+
# Save content to a temporary HTML file
|
331 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix='.html') as tmp_file:
|
332 |
+
tmp_file.write(content.encode('utf-8'))
|
333 |
+
tmp_file_path = tmp_file.name
|
334 |
+
|
335 |
+
# Define output PDF path
|
336 |
+
pdf_path = f"{filename}.pdf"
|
337 |
+
|
338 |
+
# Convert HTML to PDF using pdfkit
|
339 |
+
try:
|
340 |
+
# Configure pdfkit options for HuggingFace Spaces environment
|
341 |
+
config = pdfkit.configuration()
|
342 |
+
pdfkit.from_file(tmp_file_path, pdf_path, configuration=config)
|
343 |
+
with open(pdf_path, "rb") as pdf_file:
|
344 |
+
PDFbyte = pdf_file.read()
|
345 |
+
|
346 |
+
# Provide download link
|
347 |
+
st.download_button(label="๐ฅ Download Report as PDF",
|
348 |
+
data=PDFbyte,
|
349 |
+
file_name=pdf_path,
|
350 |
+
mime='application/octet-stream')
|
351 |
+
except Exception as e:
|
352 |
+
st.error(f"โ ๏ธ Error exporting report: {str(e)}")
|
353 |
+
finally:
|
354 |
+
os.remove(tmp_file_path)
|
355 |
+
if os.path.exists(pdf_path):
|
356 |
+
os.remove(pdf_path)
|
357 |
+
|
358 |
+
# ------------------------------
|
359 |
+
# Main Application Function
|
360 |
+
# ------------------------------
|
361 |
+
def main():
|
362 |
+
st.set_page_config(page_title="๐ Business Intelligence Assistant", layout="wide")
|
363 |
+
st.title("๐ **Business Intelligence Assistant**")
|
364 |
+
st.write("Upload your dataset and receive comprehensive analyses, interactive visualizations, and predictive insights.")
|
365 |
+
|
366 |
+
# Initialize session state
|
367 |
+
if 'data' not in st.session_state:
|
368 |
+
st.session_state['data'] = None
|
369 |
+
if 'agent' not in st.session_state:
|
370 |
+
st.session_state['agent'] = None
|
371 |
+
if 'report_content' not in st.session_state:
|
372 |
+
st.session_state['report_content'] = ""
|
373 |
+
|
374 |
+
# File Uploader
|
375 |
+
uploaded_file = st.file_uploader("๐ฅ **Upload a CSV file**", type="csv")
|
376 |
+
|
377 |
+
try:
|
378 |
+
if uploaded_file is not None:
|
379 |
+
with st.spinner('๐ Loading and processing your data...'):
|
380 |
+
# Load the dataset
|
381 |
+
data = pd.read_csv(uploaded_file)
|
382 |
+
st.session_state['data'] = data
|
383 |
+
|
384 |
+
# Initialize the agent with the dataset
|
385 |
+
st.session_state['agent'] = DataAnalysisAgent(
|
386 |
+
dataset=data,
|
387 |
+
tools=[analyze_basic_stats, generate_correlation_matrix,
|
388 |
+
analyze_categorical_columns, suggest_features, predictive_analysis],
|
389 |
+
model=GroqLLM(),
|
390 |
+
additional_authorized_imports=["pandas", "numpy", "matplotlib", "seaborn", "plotly"]
|
391 |
+
)
|
392 |
+
|
393 |
+
st.success(f"โ
Successfully loaded dataset with {data.shape[0]} rows and {data.shape[1]} columns")
|
394 |
+
st.subheader("๐ **Data Preview**")
|
395 |
+
st.dataframe(data.head())
|
396 |
+
|
397 |
+
if st.session_state['data'] is not None:
|
398 |
+
# Sidebar for Analysis Selection
|
399 |
+
st.sidebar.header("๐ ๏ธ **Select Analysis Type**")
|
400 |
+
analysis_type = st.sidebar.selectbox(
|
401 |
+
"Choose analysis type",
|
402 |
+
["Basic Statistics", "Correlation Analysis", "Categorical Analysis",
|
403 |
+
"Feature Engineering", "Predictive Analytics", "Custom Question"]
|
404 |
+
)
|
405 |
+
|
406 |
+
if analysis_type == "Basic Statistics":
|
407 |
+
with st.spinner('๐ Analyzing basic statistics...'):
|
408 |
+
result = st.session_state['agent'].run(
|
409 |
+
"Use the analyze_basic_stats tool to analyze this dataset and "
|
410 |
+
"provide insights about the numerical distributions."
|
411 |
+
)
|
412 |
+
st.markdown(result, unsafe_allow_html=True)
|
413 |
+
st.session_state['report_content'] += result + "\n\n"
|
414 |
+
|
415 |
+
elif analysis_type == "Correlation Analysis":
|
416 |
+
with st.spinner('๐ Generating correlation matrix...'):
|
417 |
+
result = st.session_state['agent'].run(
|
418 |
+
"Use the generate_correlation_matrix tool to analyze correlations "
|
419 |
+
"and explain any strong relationships found."
|
420 |
+
)
|
421 |
+
st.components.v1.html(result, height=600)
|
422 |
+
st.session_state['report_content'] += "### Correlation Analysis\n" + result + "\n\n"
|
423 |
+
|
424 |
+
elif analysis_type == "Categorical Analysis":
|
425 |
+
with st.spinner('๐ Analyzing categorical columns...'):
|
426 |
+
result = st.session_state['agent'].run(
|
427 |
+
"Use the analyze_categorical_columns tool to examine the "
|
428 |
+
"categorical variables and explain the distributions."
|
429 |
+
)
|
430 |
+
st.markdown(result, unsafe_allow_html=True)
|
431 |
+
st.session_state['report_content'] += result + "\n\n"
|
432 |
+
|
433 |
+
elif analysis_type == "Feature Engineering":
|
434 |
+
with st.spinner('๐ง Generating feature suggestions...'):
|
435 |
+
result = st.session_state['agent'].run(
|
436 |
+
"Use the suggest_features tool to recommend potential "
|
437 |
+
"feature engineering steps for this dataset."
|
438 |
+
)
|
439 |
+
st.markdown(result, unsafe_allow_html=True)
|
440 |
+
st.session_state['report_content'] += result + "\n\n"
|
441 |
+
|
442 |
+
elif analysis_type == "Predictive Analytics":
|
443 |
+
with st.form("Predictive Analytics Form"):
|
444 |
+
st.write("๐ฎ **Predictive Analytics**")
|
445 |
+
target = st.selectbox("Select the target variable for prediction:", options=st.session_state['data'].columns)
|
446 |
+
submit = st.form_submit_button("๐ Run Predictive Analysis")
|
447 |
+
|
448 |
+
if submit:
|
449 |
+
with st.spinner('๐ Performing predictive analysis...'):
|
450 |
+
result = st.session_state['agent'].run(
|
451 |
+
f"Use the predictive_analysis tool to build a classification model with `{target}` as the target variable."
|
452 |
+
)
|
453 |
+
st.markdown(result, unsafe_allow_html=True)
|
454 |
+
st.session_state['report_content'] += result + "\n\n"
|
455 |
+
export_report(result, "Predictive_Analysis_Report")
|
456 |
+
|
457 |
+
elif analysis_type == "Custom Question":
|
458 |
+
with st.expander("๐ **Ask a Custom Question**"):
|
459 |
+
question = st.text_input("What would you like to know about your data?")
|
460 |
+
if st.button("๐ Get Answer"):
|
461 |
+
if question:
|
462 |
+
with st.spinner('๐ง Processing your question...'):
|
463 |
+
result = st.session_state['agent'].run(question)
|
464 |
+
st.markdown(result, unsafe_allow_html=True)
|
465 |
+
st.session_state['report_content'] += f"### Custom Question: {question}\n{result}\n\n"
|
466 |
+
else:
|
467 |
+
st.warning("Please enter a question.")
|
468 |
+
|
469 |
+
# Option to Export Report
|
470 |
+
if st.session_state['report_content']:
|
471 |
+
st.sidebar.markdown("---")
|
472 |
+
if st.sidebar.button("๐ค **Export Analysis Report**"):
|
473 |
+
export_report(st.session_state['report_content'], "Business_Intelligence_Report")
|
474 |
+
st.sidebar.success("โ
Report exported successfully!")
|
475 |
+
|
476 |
+
except Exception as e:
|
477 |
+
st.error(f"โ ๏ธ An error occurred: {str(e)}")
|
478 |
+
|
479 |
+
# ------------------------------
|
480 |
+
# Application Entry Point
|
481 |
+
# ------------------------------
|
482 |
+
if __name__ == "__main__":
|
483 |
+
main()
|