Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -2,127 +2,234 @@ import gradio as gr
|
|
2 |
import requests
|
3 |
from bs4 import BeautifulSoup
|
4 |
import pandas as pd
|
5 |
-
import plotly.express as px
|
6 |
from langchain_google_genai import ChatGoogleGenerativeAI
|
7 |
from langchain_core.messages import HumanMessage
|
8 |
import os
|
9 |
import re
|
10 |
|
11 |
-
#
|
12 |
-
#
|
13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
try:
|
15 |
-
headers = {
|
|
|
|
|
16 |
response = requests.get(url, headers=headers, timeout=10)
|
17 |
-
response.raise_for_status()
|
18 |
return response.text
|
19 |
except requests.RequestException as e:
|
20 |
print(f"Error fetching {url}: {e}")
|
21 |
return None
|
22 |
|
23 |
-
def analyze_onpage_seo(soup):
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
|
|
|
|
|
|
28 |
for tag in soup.find_all(h_tag):
|
29 |
headings[h_tag].append(tag.get_text(strip=True))
|
30 |
-
|
31 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
|
33 |
-
def analyze_tech_stack(
|
|
|
34 |
tech = set()
|
35 |
if "react.js" in html or 'data-reactroot' in html: tech.add("React")
|
36 |
if "vue.js" in html: tech.add("Vue.js")
|
37 |
-
if "angular.js" in html: tech.add("Angular")
|
38 |
if "wp-content" in html: tech.add("WordPress")
|
39 |
if "gtag('config'" in html: tech.add("Google Analytics (GA4)")
|
40 |
if "GTM-" in html: tech.add("Google Tag Manager")
|
41 |
-
if
|
|
|
|
|
42 |
return list(tech) if tech else ["Basic HTML/CSS"]
|
43 |
|
44 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
api_key = os.environ.get("GEMINI_API_KEY")
|
46 |
if not api_key:
|
47 |
-
return "
|
|
|
48 |
try:
|
49 |
llm = ChatGoogleGenerativeAI(model="gemini-1.5-flash", google_api_key=api_key)
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
prompt = f"""
|
51 |
-
|
52 |
-
|
53 |
-
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
-
|
59 |
-
|
60 |
-
Provide a 3-bullet point summary covering:
|
61 |
-
1. **Their Primary Goal:** What is this page trying to achieve based on its language and structure?
|
62 |
-
2. **Their Target Audience:** Who are they talking to?
|
63 |
-
3. **A Key Strategic Insight:** What is one clever thing they are doing, or one major missed opportunity?
|
64 |
"""
|
65 |
response = llm.invoke([HumanMessage(content=prompt)])
|
66 |
return response.content
|
67 |
except Exception as e:
|
68 |
-
return f"
|
|
|
|
|
69 |
|
70 |
-
def competitor_teardown(url):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
if not url.startswith(('http://', 'https://')):
|
72 |
url = 'https://' + url
|
73 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
html = fetch_html(url)
|
75 |
if not html:
|
76 |
-
|
|
|
|
|
77 |
return
|
|
|
78 |
soup = BeautifulSoup(html, 'html.parser')
|
79 |
-
|
|
|
80 |
seo_data = analyze_onpage_seo(soup)
|
81 |
-
tech_data = analyze_tech_stack(
|
82 |
-
|
83 |
-
ai_summary = generate_ai_summary(url, seo_data,
|
84 |
-
|
85 |
-
|
|
|
|
|
|
|
|
|
86 |
| Metric | Value |
|
87 |
| :--- | :--- |
|
88 |
| **Page Title** | `{seo_data['title']}` |
|
89 |
| **Meta Description** | `{seo_data['description']}` |
|
90 |
-
| **Word Count** | `{seo_data['word_count']}` |
|
91 |
-
|
92 |
-
|
|
|
93 |
- **H2 Tags ({len(seo_data['headings']['h2'])}):** {len(seo_data['headings']['h2'])} found
|
94 |
"""
|
95 |
-
|
96 |
-
|
97 |
|
98 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
99 |
with gr.Blocks(theme=gr.themes.Soft(), css="footer {display: none !important;}") as demo:
|
100 |
gr.Markdown("# π΅οΈ Gumbo Board: The Instant Competitor Teardown")
|
101 |
gr.Markdown("Enter a competitor's website to get an instant analysis of their online strategy. *Powered by Gumbo (BeautifulSoup) & AI.*")
|
|
|
102 |
with gr.Row():
|
103 |
url_input = gr.Textbox(label="Enter Competitor URL", placeholder="e.g., notion.so or mailchimp.com", scale=4)
|
104 |
submit_btn = gr.Button("Analyze", variant="primary", scale=1)
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
|
|
109 |
seo_output = gr.Markdown()
|
110 |
-
with gr.TabItem("βοΈ Tech Stack"):
|
111 |
tech_output = gr.Markdown()
|
112 |
-
with gr.TabItem("π’ Ads & Keywords
|
113 |
ads_output = gr.Markdown()
|
114 |
-
|
115 |
-
|
|
|
|
|
116 |
submit_btn.click(
|
117 |
fn=competitor_teardown,
|
118 |
inputs=[url_input],
|
119 |
-
outputs=
|
120 |
)
|
|
|
121 |
gr.Markdown("---")
|
122 |
-
gr.Markdown("### Ready for More
|
123 |
|
124 |
-
# --- THE FIX: Launch the app within a main block ---
|
125 |
-
# This tells the Python interpreter that this is the main program to run
|
126 |
-
# and it should wait here, keeping the server alive.
|
127 |
if __name__ == "__main__":
|
128 |
demo.launch()
|
|
|
2 |
import requests
|
3 |
from bs4 import BeautifulSoup
|
4 |
import pandas as pd
|
|
|
5 |
from langchain_google_genai import ChatGoogleGenerativeAI
|
6 |
from langchain_core.messages import HumanMessage
|
7 |
import os
|
8 |
import re
|
9 |
|
10 |
+
# --- Configuration & Initialization ---
|
11 |
+
# For deployment on Hugging Face, set GEMINI_API_KEY in the Space's secrets.
|
12 |
+
# AHREFS_API_KEY is optional for now, as we will simulate the data.
|
13 |
+
AHREFS_API_KEY = os.environ.get("AHREFS_API_KEY")
|
14 |
+
|
15 |
+
# --- Core Analysis Functions ---
|
16 |
+
|
17 |
+
def fetch_html(url: str) -> str | None:
|
18 |
+
"""Fetches HTML content from a URL with a browser-like user-agent."""
|
19 |
try:
|
20 |
+
headers = {
|
21 |
+
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36'
|
22 |
+
}
|
23 |
response = requests.get(url, headers=headers, timeout=10)
|
24 |
+
response.raise_for_status() # Raise an exception for bad status codes (4xx or 5xx)
|
25 |
return response.text
|
26 |
except requests.RequestException as e:
|
27 |
print(f"Error fetching {url}: {e}")
|
28 |
return None
|
29 |
|
30 |
+
def analyze_onpage_seo(soup: BeautifulSoup) -> dict:
|
31 |
+
"""Analyzes the on-page SEO elements of a webpage."""
|
32 |
+
title = soup.find('title').get_text(strip=True) if soup.find('title') else "Not found"
|
33 |
+
description_tag = soup.find('meta', attrs={'name': 'description'})
|
34 |
+
description = description_tag['content'] if description_tag and description_tag.has_attr('content') else "Not found"
|
35 |
+
|
36 |
+
headings = {'h1': [], 'h2': []}
|
37 |
+
for h_tag in ['h1', 'h2']:
|
38 |
for tag in soup.find_all(h_tag):
|
39 |
headings[h_tag].append(tag.get_text(strip=True))
|
40 |
+
|
41 |
+
word_count = len(soup.get_text(separator=' ', strip=True).split())
|
42 |
+
|
43 |
+
return {
|
44 |
+
"title": title,
|
45 |
+
"description": description,
|
46 |
+
"headings": headings,
|
47 |
+
"word_count": word_count
|
48 |
+
}
|
49 |
|
50 |
+
def analyze_tech_stack(html: str) -> list[str]:
|
51 |
+
"""Performs a basic analysis of the technologies used on the page."""
|
52 |
tech = set()
|
53 |
if "react.js" in html or 'data-reactroot' in html: tech.add("React")
|
54 |
if "vue.js" in html: tech.add("Vue.js")
|
|
|
55 |
if "wp-content" in html: tech.add("WordPress")
|
56 |
if "gtag('config'" in html: tech.add("Google Analytics (GA4)")
|
57 |
if "GTM-" in html: tech.add("Google Tag Manager")
|
58 |
+
if "tailwind" in html: tech.add("Tailwind CSS")
|
59 |
+
if "shopify" in html: tech.add("Shopify")
|
60 |
+
|
61 |
return list(tech) if tech else ["Basic HTML/CSS"]
|
62 |
|
63 |
+
def analyze_ads_and_keywords(domain: str) -> dict:
|
64 |
+
"""
|
65 |
+
Simulates fetching paid keywords and ad data from a service like Ahrefs.
|
66 |
+
This provides a 'wow' demo for specific, well-known sites.
|
67 |
+
"""
|
68 |
+
# In a real product with a subscription, you would uncomment this block:
|
69 |
+
# if not AHREFS_API_KEY:
|
70 |
+
# return {"error": "This feature requires a Pro subscription to an SEO data provider."}
|
71 |
+
# url = f"https://api.ahrefs.com/v3/...?target={domain}"
|
72 |
+
# response = requests.get(url, headers={"Authorization": f"Bearer {AHREFS_API_KEY}"})
|
73 |
+
# return response.json()
|
74 |
+
|
75 |
+
print(f"Simulating Ads & Keywords API call for {domain}")
|
76 |
+
if "notion" in domain:
|
77 |
+
return {
|
78 |
+
"keywords": [
|
79 |
+
{"keyword": "what is notion", "volume": 65000, "cpc": 0.50},
|
80 |
+
{"keyword": "notion templates", "volume": 45000, "cpc": 1.20},
|
81 |
+
{"keyword": "second brain app", "volume": 12000, "cpc": 2.50},
|
82 |
+
{"keyword": "project management software", "volume": 25000, "cpc": 8.00},
|
83 |
+
],
|
84 |
+
"ads": [
|
85 |
+
{"title": "Notion β Your All-in-One Workspace", "text": "Organize your life and work. From notes and docs, to projects and wikis, Notion is all you need."},
|
86 |
+
{"title": "The Best Second Brain App | Notion", "text": "Stop juggling tools. Notion combines everything you need to think, write, and plan in one place."},
|
87 |
+
]
|
88 |
+
}
|
89 |
+
if "mailchimp" in domain:
|
90 |
+
return {
|
91 |
+
"keywords": [
|
92 |
+
{"keyword": "email marketing", "volume": 90500, "cpc": 15.50},
|
93 |
+
{"keyword": "free email marketing tools", "volume": 14800, "cpc": 12.00},
|
94 |
+
{"keyword": "newsletter software", "volume": 8100, "cpc": 9.50},
|
95 |
+
],
|
96 |
+
"ads": [
|
97 |
+
{"title": "Mailchimp: Marketing & Email", "text": "Grow your business with Mailchimp's All-in-One marketing, automation & email marketing platform."},
|
98 |
+
]
|
99 |
+
}
|
100 |
+
return {"keywords": [], "ads": []}
|
101 |
+
|
102 |
+
def generate_ai_summary(url: str, seo_data: dict, ads_data: dict) -> str:
|
103 |
+
"""Generates a high-level strategic summary using an LLM."""
|
104 |
api_key = os.environ.get("GEMINI_API_KEY")
|
105 |
if not api_key:
|
106 |
+
return "β οΈ **AI Summary Unavailable:** The `GEMINI_API_KEY` is not set in the Space secrets. Please ask the Space owner to add it."
|
107 |
+
|
108 |
try:
|
109 |
llm = ChatGoogleGenerativeAI(model="gemini-1.5-flash", google_api_key=api_key)
|
110 |
+
|
111 |
+
ads_summary = "They do not appear to be running any significant Google Ads campaigns."
|
112 |
+
if ads_data and ads_data.get('keywords'):
|
113 |
+
top_keyword = ads_data['keywords'][0]
|
114 |
+
ads_summary = f"They are actively running Google Ads, primarily bidding on high-intent keywords like **'{top_keyword['keyword']}'**."
|
115 |
+
|
116 |
prompt = f"""
|
117 |
+
As a world-class marketing strategist, analyze the data for the website `{url}` and provide a concise, actionable summary in markdown format.
|
118 |
+
|
119 |
+
**On-Page Focus:** Their primary H1 heading is "{seo_data['headings']['h1'][0] if seo_data['headings']['h1'] else 'N/A'}".
|
120 |
+
**Paid Strategy:** {ads_summary}
|
121 |
+
|
122 |
+
Based on this, provide your **Strategic Teardown**:
|
123 |
+
- **π― Core Marketing Angle:** What is their main value proposition and selling point?
|
124 |
+
- **π Customer Acquisition Focus:** Based on the data, are they focused more on organic SEO or paid advertising?
|
125 |
+
- **π‘ One Actionable Insight:** What is one clever tactic they're using, or one key opportunity they are missing?
|
|
|
|
|
|
|
|
|
126 |
"""
|
127 |
response = llm.invoke([HumanMessage(content=prompt)])
|
128 |
return response.content
|
129 |
except Exception as e:
|
130 |
+
return f"β οΈ **AI Summary Failed:** The API call could not be completed. Error: {e}"
|
131 |
+
|
132 |
+
# --- Main Orchestrator ---
|
133 |
|
134 |
+
def competitor_teardown(url: str):
|
135 |
+
"""The main function that runs the entire analysis pipeline."""
|
136 |
+
# Define the initial state for all outputs
|
137 |
+
outputs = {
|
138 |
+
"summary": " ", "seo": " ", "tech": " ", "ads": " ",
|
139 |
+
"btn": gr.Button("Analyzing...", interactive=False)
|
140 |
+
}
|
141 |
+
# Immediately update the UI to show the "Analyzing..." state
|
142 |
+
yield list(outputs.values())
|
143 |
+
|
144 |
+
# --- 1. Data Fetching ---
|
145 |
if not url.startswith(('http://', 'https://')):
|
146 |
url = 'https://' + url
|
147 |
+
domain_match = re.search(r'https?://(?:www\.)?([^/]+)', url)
|
148 |
+
if not domain_match:
|
149 |
+
outputs["summary"] = "β **Invalid URL:** Please enter a valid website address like `notion.so`."
|
150 |
+
outputs["btn"] = gr.Button("Analyze", interactive=True)
|
151 |
+
yield list(outputs.values())
|
152 |
+
return
|
153 |
+
domain = domain_match.group(1)
|
154 |
+
|
155 |
html = fetch_html(url)
|
156 |
if not html:
|
157 |
+
outputs["summary"] = f"β **Fetch Failed:** Could not retrieve content from `{url}`. The site may be down or blocking scrapers."
|
158 |
+
outputs["btn"] = gr.Button("Analyze", interactive=True)
|
159 |
+
yield list(outputs.values())
|
160 |
return
|
161 |
+
|
162 |
soup = BeautifulSoup(html, 'html.parser')
|
163 |
+
|
164 |
+
# --- 2. Run All Analyses ---
|
165 |
seo_data = analyze_onpage_seo(soup)
|
166 |
+
tech_data = analyze_tech_stack(html)
|
167 |
+
ads_data = analyze_ads_and_keywords(domain)
|
168 |
+
ai_summary = generate_ai_summary(url, seo_data, ads_data)
|
169 |
+
|
170 |
+
# --- 3. Prepare Rich Markdown Outputs ---
|
171 |
+
outputs["summary"] = ai_summary
|
172 |
+
|
173 |
+
outputs["seo"] = f"""
|
174 |
+
### π SEO & Content Analysis
|
175 |
| Metric | Value |
|
176 |
| :--- | :--- |
|
177 |
| **Page Title** | `{seo_data['title']}` |
|
178 |
| **Meta Description** | `{seo_data['description']}` |
|
179 |
+
| **Word Count** | `{seo_data['word_count']:,}` |
|
180 |
+
|
181 |
+
#### Heading Structure
|
182 |
+
- **H1 Tags ({len(seo_data['headings']['h1'])}):** {', '.join(f'`{h}`' for h in seo_data['headings']['h1']) if seo_data['headings']['h1'] else 'None Found'}
|
183 |
- **H2 Tags ({len(seo_data['headings']['h2'])}):** {len(seo_data['headings']['h2'])} found
|
184 |
"""
|
185 |
+
|
186 |
+
outputs["tech"] = "### βοΈ Technology Stack\n\n" + "\n".join([f"- `{t}`" for t in tech_data])
|
187 |
|
188 |
+
if ads_data.get("keywords"):
|
189 |
+
df = pd.DataFrame(ads_data["keywords"])
|
190 |
+
df['cpc'] = df['cpc'].apply(lambda x: f"${x:.2f}")
|
191 |
+
ads_md = "### π’ Paid Ads & Keywords\nThis competitor is actively bidding on Google Search ads. Here are their top keywords:\n\n"
|
192 |
+
ads_md += df.to_markdown(index=False)
|
193 |
+
ads_md += "\n\n### βοΈ Sample Ad Copy\n\n"
|
194 |
+
for ad in ads_data["ads"]:
|
195 |
+
ads_md += f"**{ad['title']}**\n\n>{ad['text']}\n\n---\n\n"
|
196 |
+
outputs["ads"] = ads_md
|
197 |
+
else:
|
198 |
+
outputs["ads"] = "### π’ Paid Ads & Keywords\n\nNo significant paid advertising activity was detected for this domain."
|
199 |
+
|
200 |
+
outputs["btn"] = gr.Button("Analyze", interactive=True)
|
201 |
+
yield list(outputs.values())
|
202 |
+
|
203 |
+
# --- Gradio UI Definition ---
|
204 |
with gr.Blocks(theme=gr.themes.Soft(), css="footer {display: none !important;}") as demo:
|
205 |
gr.Markdown("# π΅οΈ Gumbo Board: The Instant Competitor Teardown")
|
206 |
gr.Markdown("Enter a competitor's website to get an instant analysis of their online strategy. *Powered by Gumbo (BeautifulSoup) & AI.*")
|
207 |
+
|
208 |
with gr.Row():
|
209 |
url_input = gr.Textbox(label="Enter Competitor URL", placeholder="e.g., notion.so or mailchimp.com", scale=4)
|
210 |
submit_btn = gr.Button("Analyze", variant="primary", scale=1)
|
211 |
+
|
212 |
+
with gr.Tabs() as tabs:
|
213 |
+
with gr.TabItem("π§ AI Summary", id=0):
|
214 |
+
summary_output = gr.Markdown()
|
215 |
+
with gr.TabItem("π On-Page SEO", id=1):
|
216 |
seo_output = gr.Markdown()
|
217 |
+
with gr.TabItem("βοΈ Tech Stack", id=2):
|
218 |
tech_output = gr.Markdown()
|
219 |
+
with gr.TabItem("π’ Ads & Keywords", id=3):
|
220 |
ads_output = gr.Markdown()
|
221 |
+
|
222 |
+
# Define the list of outputs in the correct order.
|
223 |
+
outputs_list = [summary_output, seo_output, tech_output, ads_output, submit_btn]
|
224 |
+
|
225 |
submit_btn.click(
|
226 |
fn=competitor_teardown,
|
227 |
inputs=[url_input],
|
228 |
+
outputs=outputs_list
|
229 |
)
|
230 |
+
|
231 |
gr.Markdown("---")
|
232 |
+
gr.Markdown("### Ready for More?\nGet unlimited reports, save projects, and export to PDF with our Pro plan.\n**[π Click Here to Go Pro on Gumroad!](https://gumroad.com/)**")
|
233 |
|
|
|
|
|
|
|
234 |
if __name__ == "__main__":
|
235 |
demo.launch()
|