File size: 10,764 Bytes
f9a0bdb
 
 
 
 
 
 
 
 
 
 
517de74
994feb6
5e95a20
 
 
d26962d
f9a0bdb
517de74
f9a0bdb
 
94febc8
f9a0bdb
2b2ae99
f9a0bdb
 
 
fe00e4d
f9a0bdb
978c4cf
4372b0a
 
a4f7e5c
f9a0bdb
 
 
7e2c73b
f9a0bdb
7e2c73b
994feb6
7e2c73b
 
f9a0bdb
7e2c73b
fe00e4d
5e95a20
7e2c73b
f9a0bdb
 
 
 
 
 
 
 
994feb6
7e2c73b
 
f9a0bdb
994feb6
b6ee928
 
4372b0a
 
 
 
 
b6ee928
a4f7e5c
b6ee928
f9a0bdb
36986a7
a4f7e5c
fe00e4d
f9a0bdb
 
 
 
 
 
 
 
 
 
fe00e4d
994feb6
fbb4b8d
f9a0bdb
4372b0a
fe00e4d
 
 
994feb6
 
f9a0bdb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fe00e4d
 
f9a0bdb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fe00e4d
f9a0bdb
 
 
 
 
 
 
fe00e4d
f9a0bdb
 
 
 
 
 
 
 
 
994feb6
5e95a20
fe00e4d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
#!/usr/bin/env python3
# app.py  –  MedGenesis AI Β· Streamlit front-end (v3)
# ---------------------------------------------------
# β€’ Dual-LLM selector (OpenAI | Gemini)
# β€’ Robust PDF export (all Unicode β†’ Latin-1 safe)
# β€’ Lazy session-state handling so a failed background
#   request never kills the whole app.
# β€’ New β€œVariants” tab (cBioPortal) + null-safe β€œGraph”
#   and β€œMetrics” using the patched helpers.

import os, pathlib, asyncio, re
from pathlib import Path

import streamlit as st
import pandas as pd
import plotly.express as px
from streamlit_agraph import agraph
from fpdf import FPDF

from mcp.orchestrator    import orchestrate_search, answer_ai_question
from mcp.workspace       import get_workspace, save_query
from mcp.knowledge_graph import build_agraph
from mcp.graph_metrics   import build_nx, get_top_hubs, get_density

# ── Streamlit telemetry dir fix ─────────────────────────────────────
os.environ["STREAMLIT_DATA_DIR"] = "/tmp/.streamlit"
os.environ["XDG_STATE_HOME"] = "/tmp"
os.environ["STREAMLIT_BROWSER_GATHERUSAGESTATS"] = "false"
pathlib.Path("/tmp/.streamlit").mkdir(parents=True, exist_ok=True)

ROOT = Path(__file__).parent
LOGO = ROOT / "assets" / "logo.png"

# ── PDF export helper (robust to ALL Unicode) ───────────────────────
def _latin1_safe(txt: str) -> str:
    return txt.encode("latin-1", "replace").decode("latin-1")

def _pdf(papers):
    pdf = FPDF()
    pdf.set_auto_page_break(auto=True, margin=15)
    pdf.add_page()
    pdf.set_font("Helvetica", size=11)
    pdf.cell(200, 8, _latin1_safe("MedGenesis AI – Results"), ln=True, align="C")
    pdf.ln(3)

    for i, p in enumerate(papers, 1):
        pdf.set_font("Helvetica", "B", 11)
        pdf.multi_cell(0, 7, _latin1_safe(f"{i}. {p['title']}"))
        pdf.set_font("Helvetica", "", 9)
        body = (
            f"{p['authors']}\n"
            f"{p['summary']}\n"
            f"{p['link']}\n"
        )
        pdf.multi_cell(0, 6, _latin1_safe(body))
        pdf.ln(1)
    return pdf.output(dest="S").encode("latin-1", "replace")

# ── Sidebar workspace ───────────────────────────────────────────────
def _workspace_sidebar():
    with st.sidebar:
        st.header("πŸ—‚οΈ Workspace")
        ws = get_workspace()
        if not ws:
            st.info("Run a search then press **Save** to populate this list.")
            return
        for i, item in enumerate(ws, 1):
            with st.expander(f"{i}. {item['query']}"):
                st.write(item["result"]["ai_summary"])

# ── UI main routine ─────────────────────────────────────────────────
def render_ui():
    st.set_page_config("MedGenesis AI", layout="wide")

    # Session-state defaults
    for key, default in {
        "query_result"     : None,
        "last_query"       : "",
        "last_llm"         : "openai",
        "followup_input"   : "",
        "followup_response": None,
    }.items():
        if key not in st.session_state:
            st.session_state[key] = default

    _workspace_sidebar()

    # Header block
    c1, c2 = st.columns([0.15, 0.85])
    with c1:
        if LOGO.exists():
            st.image(str(LOGO), width=105)
    with c2:
        st.markdown("## 🧬 **MedGenesis AI**")
        st.caption("Multi-source biomedical assistant – OpenAI / Gemini")

    # Controls
    llm   = st.radio("LLM engine", ["openai", "gemini"],
                     horizontal=True, index=0)
    query = st.text_input("Enter biomedical question",
                          placeholder="e.g. CRISPR glioblastoma therapy")

    # Run search
    if st.button("Run Search πŸš€") and query:
        with st.spinner("Collecting literature & biomedical data …"):
            res = asyncio.run(orchestrate_search(query, llm=llm))
        st.session_state.query_result = res
        st.session_state.last_query   = query
        st.session_state.last_llm     = llm
        st.session_state.followup_input   = ""
        st.session_state.followup_response = None

    res = st.session_state.query_result
    if res:
        # Guard against missing keys
        for key in (
            "papers", "umls", "drug_safety", "genes", "mesh_defs",
            "gene_disease", "clinical_trials", "variants"
        ):
            res.setdefault(key, [])

        # -------------- TABS -------------------------------------------------
        tabs = st.tabs([
            "Results", "Genes", "Trials", "Variants",
            "Graph", "Metrics", "Visuals"
        ])

        # ── Results tab ─────────────────────────────────────────────────────
        with tabs[0]:
            st.subheader("Literature")
            for i, p in enumerate(res["papers"], 1):
                st.markdown(f"**{i}. [{p['title']}]({p['link']})**  *{p['authors']}*")
                st.write(p["summary"])
            col1, col2 = st.columns(2)
            with col1:
                st.download_button(
                    "CSV",
                    pd.DataFrame(res["papers"]).to_csv(index=False),
                    "papers.csv",
                    "text/csv",
                )
            with col2:
                st.download_button(
                    "PDF",
                    _pdf(res["papers"]),
                    "papers.pdf",
                    "application/pdf",
                )
            if st.button("πŸ’Ύ Save"):
                save_query(st.session_state.last_query, res)
                st.success("Saved to workspace")

            st.subheader("UMLS concepts")
            for c in res["umls"]:
                if c.get("cui"):
                    st.write(f"- **{c['name']}** ({c['cui']})")

            st.subheader("OpenFDA safety signals")
            for d in res["drug_safety"]:
                st.json(d)

            st.subheader("AI summary")
            st.info(res["ai_summary"])

        # ── Genes tab ───────────────────────────────────────────────────────
        with tabs[1]:
            st.header("Gene / Variant signals")
            for g in res["genes"]:
                lab = g.get("name") or g.get("symbol") or g.get("geneid")
                st.write(f"- **{lab}**")
            if res["gene_disease"]:
                st.markdown("### DisGeNET associations")
                st.json(res["gene_disease"][:15])
            if res["mesh_defs"]:
                st.markdown("### MeSH definitions")
                for d in res["mesh_defs"]:
                    if d:
                        st.write("-", d)

        # ── Trials tab ──────────────────────────────────────────────────────
        with tabs[2]:
            st.header("Clinical trials")
            if not res["clinical_trials"]:
                st.info("No trials (rate-limited or none found).")
            for t in res["clinical_trials"]:
                st.markdown(f"**{t['nctId']}** – {t['briefTitle']}")
                st.write(f"Phase {t.get('phase')} | Status {t.get('status')}")

        # ── Variants tab ────────────────────────────────────────────────────
        with tabs[3]:
            st.header("Cancer variants (cBioPortal)")
            if not res["variants"]:
                st.info("No variant data.")
            else:
                st.json(res["variants"][:50])

        # ── Graph tab ───────────────────────────────────────────────────────
        with tabs[4]:
            nodes, edges, cfg = build_agraph(
                res["papers"], res["umls"], res["drug_safety"]
            )
            hl = st.text_input("Highlight node:", key="hl")
            if hl:
                pat = re.compile(re.escape(hl), re.I)
                for n in nodes:
                    n.color = "#f1c40f" if pat.search(n.label) else "#d3d3d3"
            agraph(nodes, edges, cfg)

        # ── Metrics tab ─────────────────────────────────────────────────────
        with tabs[5]:
            G = build_nx(
                [n.__dict__ for n in nodes],
                [e.__dict__ for e in edges],
            )
            st.metric("Density", f"{get_density(G):.3f}")
            st.markdown("**Top hubs**")
            for nid, sc in get_top_hubs(G):
                lab = next((n.label for n in nodes if n.id == nid), nid)
                st.write(f"- {lab}  {sc:.3f}")

        # ── Visuals tab ────────────────────────────────────────────────────
        with tabs[6]:
            years = [p.get("published", "")[:4] for p in res["papers"] if p.get("published")]
            if years:
                st.plotly_chart(px.histogram(years, nbins=12,
                                             title="Publication Year"))

        # ── Follow-up Q-A block ────────────────────────────────────────────
        st.markdown("---")
        st.text_input("Ask follow-up question:", key="followup_input")

        def _on_ask():
            q = st.session_state.followup_input.strip()
            if not q:
                st.warning("Please type a question first.")
                return
            with st.spinner("Querying LLM …"):
                ans = asyncio.run(
                    answer_ai_question(
                        q,
                        context=st.session_state.last_query,
                        llm=st.session_state.last_llm,
                    )
                )
            st.session_state.followup_response = ans["answer"]

        st.button("Ask AI", on_click=_on_ask)

        if st.session_state.followup_response:
            st.write(st.session_state.followup_response)

    else:
        st.info("Enter a question and press **Run Search πŸš€**")


if __name__ == "__main__":
    render_ui()