File size: 942 Bytes
0a3aede
 
2c1c247
 
 
 
 
 
 
 
 
 
 
3f9a9ea
2c1c247
3f9a9ea
2c1c247
0a3aede
3f9a9ea
2c1c247
 
 
3f9a9ea
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
# mcp/nlp.py
import spacy
from scispacy.linking import EntityLinker

@spacy.util.cache_dir("~/.cache/scispacy")
def load_model():
    nlp = spacy.load("en_core_sci_scibert")
    linker = EntityLinker(name="umls", resolve_abbreviations=True, threshold=0.75)
    nlp.add_pipe(linker)
    return nlp

nlp = load_model()

def extract_umls_concepts(text: str) -> list[dict]:
    """
    Returns unique UMLS concepts with confidence scores and semantic types.
    """
    doc = nlp(text)
    best = {}
    for ent in doc.ents:
        for cui, score in ent._.umls_ents:
            meta = nlp.get_pipe("scispacy_linker").kb.cui_to_entity[cui]
            if cui not in best or score > best[cui]["score"]:
                best[cui] = {
                    "cui": cui,
                    "name": meta.canonical_name,
                    "score": float(score),
                    "types": meta.types
                }
    return list(best.values())