MCP_Res / app.py
mgbam's picture
Update app.py
f352c67 verified
#!/usr/bin/env python3
"""
MedGenesis AI – Streamlit front-end (v3)
--------------------------------------
Supports **OpenAI** and **Gemini** engines and the enriched backend
payload introduced in orchestrator v3:
• papers, umls, drug_safety, genes, mesh_defs, gene_disease,
clinical_trials, variants, ai_summary
Tabs:
Results | Genes | Trials | Variants | Graph | Metrics | Visuals
"""
import os
import pathlib
import asyncio
from pathlib import Path
import streamlit as st
import pandas as pd
import plotly.express as px
from fpdf import FPDF
from streamlit_agraph import agraph
from mcp.orchestrator import orchestrate_search, answer_ai_question
from mcp.workspace import get_workspace, save_query
from mcp.knowledge_graph import build_agraph
from mcp.graph_metrics import build_nx, get_top_hubs, get_density
from mcp.alerts import check_alerts
# Streamlit telemetry directory → /tmp
os.environ.update({
"STREAMLIT_DATA_DIR": "/tmp/.streamlit",
"XDG_STATE_HOME": "/tmp",
"STREAMLIT_BROWSER_GATHERUSAGESTATS": "false",
})
pathlib.Path("/tmp/.streamlit").mkdir(parents=True, exist_ok=True)
ROOT = Path(__file__).parent
LOGO = ROOT / "assets" / "logo.png"
def _latin1_safe(txt: str) -> str:
"""Coerce UTF-8 → Latin-1 with replacement (for FPDF)."""
return txt.encode("latin-1", "replace").decode("latin-1")
def _pdf(papers: list[dict]) -> bytes:
pdf = FPDF()
pdf.set_auto_page_break(auto=True, margin=15)
pdf.add_page()
pdf.set_font("Helvetica", size=11)
pdf.cell(200, 8, _latin1_safe("MedGenesis AI – Results"), ln=True, align="C")
pdf.ln(3)
for i, p in enumerate(papers, 1):
pdf.set_font("Helvetica", "B", 11)
pdf.multi_cell(0, 7, _latin1_safe(f"{i}. {p.get('title','')}"))
pdf.set_font("Helvetica", "", 9)
body = (
f"{p.get('authors','')}\n"
f"{p.get('summary','')}\n"
f"{p.get('link','')}\n"
)
pdf.multi_cell(0, 6, _latin1_safe(body))
pdf.ln(1)
return pdf.output(dest="S").encode("latin-1", "replace")
def _workspace_sidebar():
with st.sidebar:
st.header("🗂️ Workspace")
ws = get_workspace()
if not ws:
st.info("Run a search then press **Save** to populate this list.")
return
for i, item in enumerate(ws, 1):
with st.expander(f"{i}. {item['query']}"):
st.write(item['result']['ai_summary'])
def render_ui():
st.set_page_config("MedGenesis AI", layout="wide")
# Session-state defaults
defaults = dict(
query_result=None,
followup_input="",
followup_response=None,
last_query="",
last_llm="openai",
)
for k, v in defaults.items():
st.session_state.setdefault(k, v)
_workspace_sidebar()
# Header
col1, col2 = st.columns([0.15, 0.85])
with col1:
if LOGO.exists():
st.image(str(LOGO), width=105)
with col2:
st.markdown("## 🧬 **MedGenesis AI**")
st.caption("Multi-source biomedical assistant · OpenAI / Gemini")
# Controls
engine = st.radio("LLM engine", ["openai", "gemini"], horizontal=True)
query = st.text_input("Enter biomedical question", placeholder="e.g. CRISPR glioblastoma therapy")
# Alerts
if get_workspace():
try:
alerts = asyncio.run(check_alerts([w["query"] for w in get_workspace()]))
if alerts:
with st.sidebar:
st.subheader("🔔 New papers")
for q, lnks in alerts.items():
st.write(f"**{q}** – {len(lnks)} new")
except Exception:
pass
# Run Search
if st.button("Run Search 🚀") and query:
with st.spinner("Collecting literature & biomedical data …"):
res = asyncio.run(orchestrate_search(query, llm=engine))
st.session_state.update(
query_result=res,
last_query=query,
last_llm=engine,
followup_input="",
followup_response=None,
)
st.success(f"Completed with **{res['llm_used'].title()}**")
res = st.session_state.query_result
if not res:
st.info("Enter a question and press **Run Search 🚀**")
return
# Tabs
tabs = st.tabs(["Results", "Genes", "Trials", "Variants", "Graph", "Metrics", "Visuals"])
# --- Results tab ---
with tabs[0]:
st.subheader("Literature")
for i, p in enumerate(res['papers'], 1):
st.markdown(f"**{i}. [{p.get('title','')}]({p.get('link','')})** *{p.get('authors','')}*")
st.write(p.get('summary',''))
c1, c2 = st.columns(2)
with c1:
st.download_button("CSV", pd.DataFrame(res['papers']).to_csv(index=False), "papers.csv", "text/csv")
with c2:
st.download_button("PDF", _pdf(res['papers']), "papers.pdf", "application/pdf")
if st.button("💾 Save"):
save_query(st.session_state.last_query, res)
st.success("Saved to workspace")
st.subheader("UMLS concepts")
for c in res['umls']:
if c.get('cui'):
st.write(f"- **{c.get('name','')}** ({c.get('cui')})")
st.subheader("OpenFDA safety signals")
for d in res['drug_safety']:
st.json(d)
st.subheader("AI summary")
st.info(res['ai_summary'])
# --- Genes tab ---
with tabs[1]:
st.header("Gene / Variant signals")
valid_genes = [g for g in res['genes'] if isinstance(g, dict)]
if valid_genes:
for g in valid_genes:
sym = g.get('symbol') or g.get('name') or ''
st.write(f"- **{sym}**")
else:
st.info("No gene signals returned.")
mesh_list = [d for d in res['mesh_defs'] if isinstance(d, str) and d]
if mesh_list:
st.markdown("### MeSH definitions")
for d in mesh_list:
st.write(f"- {d}")
gene_disease = [d for d in res['gene_disease'] if isinstance(d, dict)]
if gene_disease:
st.markdown("### DisGeNET links")
st.json(gene_disease[:15])
# --- Trials tab ---
with tabs[2]:
st.header("Clinical trials")
trials = res['clinical_trials']
if not trials:
st.info(
"No trials found. Try a disease name (e.g. ‘Breast Neoplasms’) "
"or specific drug (e.g. ‘Pembrolizumab’)."
)
else:
for t in trials:
st.markdown(
f"**{t.get('nctId','')}** – {t.get('briefTitle','')} "
f"Phase {t.get('phase','?')} | Status {t.get('status','?')}"
)
# --- Variants tab ---
with tabs[3]:
st.header("Cancer variants (cBioPortal)")
variants = res['variants']
if not variants:
st.info(
"No variants found. Try a well-known gene symbol like ‘TP53’ or ‘BRCA1’."
)
else:
st.json(variants[:30])
# --- Graph tab ---
with tabs[4]:
nodes, edges, cfg = build_agraph(res['papers'], res['umls'], res['drug_safety'])
agraph(nodes, edges, cfg)
# --- Metrics tab ---
with tabs[5]:
G = build_nx([n.__dict__ for n in nodes], [e.__dict__ for e in edges])
st.metric("Density", f"{get_density(G):.3f}")
st.markdown("**Top hubs**")
for nid, sc in get_top_hubs(G):
lab = next((n.label for n in nodes if n.id == nid), nid)
st.write(f"- {lab} {sc:.3f}")
# --- Visuals tab ---
with tabs[6]:
years = [p.get('published') for p in res['papers'] if p.get('published')]
if years:
st.plotly_chart(px.histogram(years, nbins=12, title="Publication Year"))
# Follow-up QA (outside tabs)
st.markdown("---")
input_col, button_col = st.columns([4, 1])
with input_col:
followup = st.text_input("Ask follow-up question:", key="followup_input")
with button_col:
if st.button("Ask AI"):
if followup.strip():
with st.spinner("Querying LLM …"):
ans = asyncio.run(
answer_ai_question(
question=followup,
context=st.session_state.last_query,
llm=st.session_state.last_llm,
)
)
st.session_state.followup_response = ans.get('answer', '')
else:
st.warning("Please type a question first.")
if st.session_state.followup_response:
st.write(st.session_state.followup_response)
if __name__ == "__main__":
render_ui()