|
|
|
""" |
|
MedGenesis AI – Streamlit front-end (v3) |
|
-------------------------------------- |
|
Supports **OpenAI** and **Gemini** engines and the enriched backend |
|
payload introduced in orchestrator v3: |
|
• papers, umls, drug_safety, genes, mesh_defs, gene_disease, |
|
clinical_trials, variants, ai_summary |
|
Tabs: |
|
Results | Genes | Trials | Variants | Graph | Metrics | Visuals |
|
""" |
|
|
|
import os |
|
import pathlib |
|
import asyncio |
|
from pathlib import Path |
|
|
|
import streamlit as st |
|
import pandas as pd |
|
import plotly.express as px |
|
from fpdf import FPDF |
|
from streamlit_agraph import agraph |
|
|
|
from mcp.orchestrator import orchestrate_search, answer_ai_question |
|
from mcp.workspace import get_workspace, save_query |
|
from mcp.knowledge_graph import build_agraph |
|
from mcp.graph_metrics import build_nx, get_top_hubs, get_density |
|
from mcp.alerts import check_alerts |
|
|
|
|
|
os.environ.update({ |
|
"STREAMLIT_DATA_DIR": "/tmp/.streamlit", |
|
"XDG_STATE_HOME": "/tmp", |
|
"STREAMLIT_BROWSER_GATHERUSAGESTATS": "false", |
|
}) |
|
pathlib.Path("/tmp/.streamlit").mkdir(parents=True, exist_ok=True) |
|
|
|
ROOT = Path(__file__).parent |
|
LOGO = ROOT / "assets" / "logo.png" |
|
|
|
|
|
def _latin1_safe(txt: str) -> str: |
|
"""Coerce UTF-8 → Latin-1 with replacement (for FPDF).""" |
|
return txt.encode("latin-1", "replace").decode("latin-1") |
|
|
|
|
|
def _pdf(papers: list[dict]) -> bytes: |
|
pdf = FPDF() |
|
pdf.set_auto_page_break(auto=True, margin=15) |
|
pdf.add_page() |
|
pdf.set_font("Helvetica", size=11) |
|
pdf.cell(200, 8, _latin1_safe("MedGenesis AI – Results"), ln=True, align="C") |
|
pdf.ln(3) |
|
for i, p in enumerate(papers, 1): |
|
pdf.set_font("Helvetica", "B", 11) |
|
pdf.multi_cell(0, 7, _latin1_safe(f"{i}. {p.get('title','')}")) |
|
pdf.set_font("Helvetica", "", 9) |
|
body = ( |
|
f"{p.get('authors','')}\n" |
|
f"{p.get('summary','')}\n" |
|
f"{p.get('link','')}\n" |
|
) |
|
pdf.multi_cell(0, 6, _latin1_safe(body)) |
|
pdf.ln(1) |
|
return pdf.output(dest="S").encode("latin-1", "replace") |
|
|
|
|
|
def _workspace_sidebar(): |
|
with st.sidebar: |
|
st.header("🗂️ Workspace") |
|
ws = get_workspace() |
|
if not ws: |
|
st.info("Run a search then press **Save** to populate this list.") |
|
return |
|
for i, item in enumerate(ws, 1): |
|
with st.expander(f"{i}. {item['query']}"): |
|
st.write(item['result']['ai_summary']) |
|
|
|
|
|
def render_ui(): |
|
st.set_page_config("MedGenesis AI", layout="wide") |
|
|
|
|
|
defaults = dict( |
|
query_result=None, |
|
followup_input="", |
|
followup_response=None, |
|
last_query="", |
|
last_llm="openai", |
|
) |
|
for k, v in defaults.items(): |
|
st.session_state.setdefault(k, v) |
|
|
|
_workspace_sidebar() |
|
|
|
|
|
col1, col2 = st.columns([0.15, 0.85]) |
|
with col1: |
|
if LOGO.exists(): |
|
st.image(str(LOGO), width=105) |
|
with col2: |
|
st.markdown("## 🧬 **MedGenesis AI**") |
|
st.caption("Multi-source biomedical assistant · OpenAI / Gemini") |
|
|
|
|
|
engine = st.radio("LLM engine", ["openai", "gemini"], horizontal=True) |
|
query = st.text_input("Enter biomedical question", placeholder="e.g. CRISPR glioblastoma therapy") |
|
|
|
|
|
if get_workspace(): |
|
try: |
|
alerts = asyncio.run(check_alerts([w["query"] for w in get_workspace()])) |
|
if alerts: |
|
with st.sidebar: |
|
st.subheader("🔔 New papers") |
|
for q, lnks in alerts.items(): |
|
st.write(f"**{q}** – {len(lnks)} new") |
|
except Exception: |
|
pass |
|
|
|
|
|
if st.button("Run Search 🚀") and query: |
|
with st.spinner("Collecting literature & biomedical data …"): |
|
res = asyncio.run(orchestrate_search(query, llm=engine)) |
|
st.session_state.update( |
|
query_result=res, |
|
last_query=query, |
|
last_llm=engine, |
|
followup_input="", |
|
followup_response=None, |
|
) |
|
st.success(f"Completed with **{res['llm_used'].title()}**") |
|
|
|
res = st.session_state.query_result |
|
if not res: |
|
st.info("Enter a question and press **Run Search 🚀**") |
|
return |
|
|
|
|
|
tabs = st.tabs(["Results", "Genes", "Trials", "Variants", "Graph", "Metrics", "Visuals"]) |
|
|
|
|
|
with tabs[0]: |
|
st.subheader("Literature") |
|
for i, p in enumerate(res['papers'], 1): |
|
st.markdown(f"**{i}. [{p.get('title','')}]({p.get('link','')})** *{p.get('authors','')}*") |
|
st.write(p.get('summary','')) |
|
c1, c2 = st.columns(2) |
|
with c1: |
|
st.download_button("CSV", pd.DataFrame(res['papers']).to_csv(index=False), "papers.csv", "text/csv") |
|
with c2: |
|
st.download_button("PDF", _pdf(res['papers']), "papers.pdf", "application/pdf") |
|
if st.button("💾 Save"): |
|
save_query(st.session_state.last_query, res) |
|
st.success("Saved to workspace") |
|
|
|
st.subheader("UMLS concepts") |
|
for c in res['umls']: |
|
if c.get('cui'): |
|
st.write(f"- **{c.get('name','')}** ({c.get('cui')})") |
|
|
|
st.subheader("OpenFDA safety signals") |
|
for d in res['drug_safety']: |
|
st.json(d) |
|
|
|
st.subheader("AI summary") |
|
st.info(res['ai_summary']) |
|
|
|
|
|
with tabs[1]: |
|
st.header("Gene / Variant signals") |
|
valid_genes = [g for g in res['genes'] if isinstance(g, dict)] |
|
if valid_genes: |
|
for g in valid_genes: |
|
sym = g.get('symbol') or g.get('name') or '' |
|
st.write(f"- **{sym}**") |
|
else: |
|
st.info("No gene signals returned.") |
|
|
|
mesh_list = [d for d in res['mesh_defs'] if isinstance(d, str) and d] |
|
if mesh_list: |
|
st.markdown("### MeSH definitions") |
|
for d in mesh_list: |
|
st.write(f"- {d}") |
|
|
|
gene_disease = [d for d in res['gene_disease'] if isinstance(d, dict)] |
|
if gene_disease: |
|
st.markdown("### DisGeNET links") |
|
st.json(gene_disease[:15]) |
|
|
|
|
|
with tabs[2]: |
|
st.header("Clinical trials") |
|
trials = res['clinical_trials'] |
|
if not trials: |
|
st.info( |
|
"No trials found. Try a disease name (e.g. ‘Breast Neoplasms’) " |
|
"or specific drug (e.g. ‘Pembrolizumab’)." |
|
) |
|
else: |
|
for t in trials: |
|
st.markdown( |
|
f"**{t.get('nctId','')}** – {t.get('briefTitle','')} " |
|
f"Phase {t.get('phase','?')} | Status {t.get('status','?')}" |
|
) |
|
|
|
|
|
with tabs[3]: |
|
st.header("Cancer variants (cBioPortal)") |
|
variants = res['variants'] |
|
if not variants: |
|
st.info( |
|
"No variants found. Try a well-known gene symbol like ‘TP53’ or ‘BRCA1’." |
|
) |
|
else: |
|
st.json(variants[:30]) |
|
|
|
|
|
with tabs[4]: |
|
nodes, edges, cfg = build_agraph(res['papers'], res['umls'], res['drug_safety']) |
|
agraph(nodes, edges, cfg) |
|
|
|
|
|
with tabs[5]: |
|
G = build_nx([n.__dict__ for n in nodes], [e.__dict__ for e in edges]) |
|
st.metric("Density", f"{get_density(G):.3f}") |
|
st.markdown("**Top hubs**") |
|
for nid, sc in get_top_hubs(G): |
|
lab = next((n.label for n in nodes if n.id == nid), nid) |
|
st.write(f"- {lab} {sc:.3f}") |
|
|
|
|
|
with tabs[6]: |
|
years = [p.get('published') for p in res['papers'] if p.get('published')] |
|
if years: |
|
st.plotly_chart(px.histogram(years, nbins=12, title="Publication Year")) |
|
|
|
|
|
st.markdown("---") |
|
input_col, button_col = st.columns([4, 1]) |
|
with input_col: |
|
followup = st.text_input("Ask follow-up question:", key="followup_input") |
|
with button_col: |
|
if st.button("Ask AI"): |
|
if followup.strip(): |
|
with st.spinner("Querying LLM …"): |
|
ans = asyncio.run( |
|
answer_ai_question( |
|
question=followup, |
|
context=st.session_state.last_query, |
|
llm=st.session_state.last_llm, |
|
) |
|
) |
|
st.session_state.followup_response = ans.get('answer', '') |
|
else: |
|
st.warning("Please type a question first.") |
|
if st.session_state.followup_response: |
|
st.write(st.session_state.followup_response) |
|
|
|
|
|
if __name__ == "__main__": |
|
render_ui() |
|
|