Update app.py
Browse files
app.py
CHANGED
|
@@ -1,6 +1,7 @@
|
|
| 1 |
-
#
|
| 2 |
import asyncio
|
| 3 |
import re
|
|
|
|
| 4 |
|
| 5 |
import streamlit as st
|
| 6 |
import pandas as pd
|
|
@@ -13,8 +14,8 @@ from mcp.knowledge_graph import build_agraph
|
|
| 13 |
from mcp.graph_metrics import build_nx, get_top_hubs, get_density
|
| 14 |
from mcp.protocols import draft_protocol
|
| 15 |
|
| 16 |
-
#
|
| 17 |
-
st.set_page_config(
|
| 18 |
if "res" not in st.session_state:
|
| 19 |
st.session_state.res = None
|
| 20 |
|
|
@@ -22,8 +23,7 @@ st.title("𧬠MedGenesis AI")
|
|
| 22 |
llm = st.radio("LLM engine", ["openai", "gemini"], horizontal=True)
|
| 23 |
query = st.text_input("Enter biomedical question")
|
| 24 |
|
| 25 |
-
# PDF
|
| 26 |
-
|
| 27 |
def _make_pdf(papers):
|
| 28 |
pdf = FPDF()
|
| 29 |
pdf.add_page(); pdf.set_font("Helvetica", size=12)
|
|
@@ -39,7 +39,8 @@ def _make_pdf(papers):
|
|
| 39 |
return pdf.output(dest="S").encode("latin-1", errors="replace")
|
| 40 |
|
| 41 |
# Run search
|
| 42 |
-
|
|
|
|
| 43 |
with st.spinner("Gathering dataβ¦"):
|
| 44 |
st.session_state.res = asyncio.run(orchestrate_search(query, llm))
|
| 45 |
res = st.session_state.res
|
|
@@ -48,10 +49,15 @@ if not res:
|
|
| 48 |
st.stop()
|
| 49 |
|
| 50 |
# Tabs
|
| 51 |
-
tabs = st.tabs([
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 52 |
|
| 53 |
-
|
| 54 |
-
with tabs[0]:
|
| 55 |
for i, p in enumerate(res["papers"], 1):
|
| 56 |
st.markdown(f"**{i}. [{p['title']}]({p['link']})**")
|
| 57 |
st.write(p["summary"])
|
|
@@ -62,8 +68,8 @@ with tabs[0]:
|
|
| 62 |
"papers.pdf", "application/pdf")
|
| 63 |
st.subheader("AI summary"); st.info(res["ai_summary"])
|
| 64 |
|
| 65 |
-
#
|
| 66 |
-
with
|
| 67 |
nodes, edges, cfg = build_agraph(
|
| 68 |
res["papers"], res["umls"], res["drug_safety"], res["umls_relations"]
|
| 69 |
)
|
|
@@ -74,8 +80,8 @@ with tabs[1]:
|
|
| 74 |
n.color = "#f1c40f" if pat.search(n.label) else n.color
|
| 75 |
agraph(nodes, edges, cfg)
|
| 76 |
|
| 77 |
-
#
|
| 78 |
-
with
|
| 79 |
clusters = res.get("clusters", [])
|
| 80 |
if clusters:
|
| 81 |
df = pd.DataFrame({
|
|
@@ -85,77 +91,49 @@ with tabs[2]:
|
|
| 85 |
st.write("### Paper Clusters")
|
| 86 |
for c in sorted(set(clusters)):
|
| 87 |
st.write(f"**Cluster {c}**")
|
| 88 |
-
for t in df[df['cluster']
|
| 89 |
st.write(f"- {t}")
|
| 90 |
else:
|
| 91 |
st.info("No clusters to show.")
|
| 92 |
|
| 93 |
-
#
|
| 94 |
-
with
|
| 95 |
if res.get("variants"):
|
| 96 |
st.json(res["variants"])
|
| 97 |
else:
|
| 98 |
st.warning("No variants found. Try 'TP53' or 'BRCA1'.")
|
| 99 |
|
| 100 |
-
#
|
| 101 |
-
with
|
| 102 |
if res.get("clinical_trials"):
|
| 103 |
st.json(res["clinical_trials"])
|
| 104 |
else:
|
| 105 |
st.warning("No trials found. Try a disease or drug.")
|
| 106 |
|
| 107 |
-
#
|
| 108 |
-
with
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
st.metric("Density", f"{get_density(G):.3f}")
|
| 113 |
st.markdown("**Top hubs**")
|
| 114 |
-
for nid,
|
| 115 |
-
lbl = next((n.label for n in nodes if n.id
|
| 116 |
-
st.write(f"- {lbl}: {
|
| 117 |
|
| 118 |
-
#
|
| 119 |
-
with
|
| 120 |
years = [p.get("published","")[:4] for p in res["papers"] if p.get("published")]
|
| 121 |
if years:
|
| 122 |
st.plotly_chart(px.histogram(years, nbins=10, title="Publication Year"))
|
| 123 |
|
| 124 |
-
#
|
| 125 |
-
with
|
| 126 |
-
|
| 127 |
-
if st.button("Draft Protocol") and
|
| 128 |
with st.spinner("Generating protocolβ¦"):
|
| 129 |
-
|
| 130 |
-
|
| 131 |
))
|
| 132 |
st.subheader("Experimental Protocol")
|
| 133 |
-
st.write(
|
| 134 |
-
βββββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 135 |
-
# In import section:
|
| 136 |
-
from mcp.embeddings import embed_texts, cluster_embeddings
|
| 137 |
-
from mcp.protocols import draft_protocol
|
| 138 |
-
|
| 139 |
-
# After creating tabs = st.tabs([...,'Clusters','Protocols']):
|
| 140 |
-
with tabs[-2]: # second last tab = Clusters
|
| 141 |
-
if res.get('clusters'):
|
| 142 |
-
df = pd.DataFrame({
|
| 143 |
-
'title': [p['title'] for p in res['papers']],
|
| 144 |
-
'cluster': res['clusters']
|
| 145 |
-
})
|
| 146 |
-
st.write("### Paper Clusters")
|
| 147 |
-
for c in sorted(set(res['clusters'])):
|
| 148 |
-
st.write(f"**Cluster {c}**")
|
| 149 |
-
for t in df[df['cluster']==c]['title']:
|
| 150 |
-
st.write(f"- {t}")
|
| 151 |
-
else:
|
| 152 |
-
st.info("No clusters to show.")
|
| 153 |
-
|
| 154 |
-
with tabs[-1]: # last tab = Protocols
|
| 155 |
-
proto_q = st.text_input("Enter hypothesis for protocol:", key="proto_q")
|
| 156 |
-
if st.button("Draft Protocol") and proto_q.strip():
|
| 157 |
-
with st.spinner("Generating protocolβ¦"):
|
| 158 |
-
proto = asyncio.run(draft_protocol(
|
| 159 |
-
proto_q, context=res['ai_summary'], llm=llm))
|
| 160 |
-
st.subheader("Experimental Protocol")
|
| 161 |
-
st.write(proto)
|
|
|
|
| 1 |
+
# app.py
|
| 2 |
import asyncio
|
| 3 |
import re
|
| 4 |
+
from pathlib import Path
|
| 5 |
|
| 6 |
import streamlit as st
|
| 7 |
import pandas as pd
|
|
|
|
| 14 |
from mcp.graph_metrics import build_nx, get_top_hubs, get_density
|
| 15 |
from mcp.protocols import draft_protocol
|
| 16 |
|
| 17 |
+
# Streamlit config
|
| 18 |
+
st.set_page_config(page_title="MedGenesis AI", layout="wide")
|
| 19 |
if "res" not in st.session_state:
|
| 20 |
st.session_state.res = None
|
| 21 |
|
|
|
|
| 23 |
llm = st.radio("LLM engine", ["openai", "gemini"], horizontal=True)
|
| 24 |
query = st.text_input("Enter biomedical question")
|
| 25 |
|
| 26 |
+
# PDF generator
|
|
|
|
| 27 |
def _make_pdf(papers):
|
| 28 |
pdf = FPDF()
|
| 29 |
pdf.add_page(); pdf.set_font("Helvetica", size=12)
|
|
|
|
| 39 |
return pdf.output(dest="S").encode("latin-1", errors="replace")
|
| 40 |
|
| 41 |
# Run search
|
| 42 |
+
enabled = st.button("Run Search π") and query.strip()
|
| 43 |
+
if enabled:
|
| 44 |
with st.spinner("Gathering dataβ¦"):
|
| 45 |
st.session_state.res = asyncio.run(orchestrate_search(query, llm))
|
| 46 |
res = st.session_state.res
|
|
|
|
| 49 |
st.stop()
|
| 50 |
|
| 51 |
# Tabs
|
| 52 |
+
tabs = st.tabs([
|
| 53 |
+
"Results", "Graph", "Clusters", "Variants",
|
| 54 |
+
"Trials", "Metrics", "Visuals", "Protocols"
|
| 55 |
+
])
|
| 56 |
+
|
| 57 |
+
# Results
|
| 58 |
+
title_tab, graph_tab, clust_tab, var_tab, trial_tab, met_tab, vis_tab, proto_tab = tabs
|
| 59 |
|
| 60 |
+
with title_tab:
|
|
|
|
| 61 |
for i, p in enumerate(res["papers"], 1):
|
| 62 |
st.markdown(f"**{i}. [{p['title']}]({p['link']})**")
|
| 63 |
st.write(p["summary"])
|
|
|
|
| 68 |
"papers.pdf", "application/pdf")
|
| 69 |
st.subheader("AI summary"); st.info(res["ai_summary"])
|
| 70 |
|
| 71 |
+
# Graph
|
| 72 |
+
with graph_tab:
|
| 73 |
nodes, edges, cfg = build_agraph(
|
| 74 |
res["papers"], res["umls"], res["drug_safety"], res["umls_relations"]
|
| 75 |
)
|
|
|
|
| 80 |
n.color = "#f1c40f" if pat.search(n.label) else n.color
|
| 81 |
agraph(nodes, edges, cfg)
|
| 82 |
|
| 83 |
+
# Clusters
|
| 84 |
+
with clust_tab:
|
| 85 |
clusters = res.get("clusters", [])
|
| 86 |
if clusters:
|
| 87 |
df = pd.DataFrame({
|
|
|
|
| 91 |
st.write("### Paper Clusters")
|
| 92 |
for c in sorted(set(clusters)):
|
| 93 |
st.write(f"**Cluster {c}**")
|
| 94 |
+
for t in df[df['cluster']==c]['title']:
|
| 95 |
st.write(f"- {t}")
|
| 96 |
else:
|
| 97 |
st.info("No clusters to show.")
|
| 98 |
|
| 99 |
+
# Variants
|
| 100 |
+
with var_tab:
|
| 101 |
if res.get("variants"):
|
| 102 |
st.json(res["variants"])
|
| 103 |
else:
|
| 104 |
st.warning("No variants found. Try 'TP53' or 'BRCA1'.")
|
| 105 |
|
| 106 |
+
# Trials
|
| 107 |
+
with trial_tab:
|
| 108 |
if res.get("clinical_trials"):
|
| 109 |
st.json(res["clinical_trials"])
|
| 110 |
else:
|
| 111 |
st.warning("No trials found. Try a disease or drug.")
|
| 112 |
|
| 113 |
+
# Metrics
|
| 114 |
+
with met_tab:
|
| 115 |
+
G = build_nx(
|
| 116 |
+
[n.__dict__ for n in nodes], [e.__dict__ for e in edges]
|
| 117 |
+
)
|
| 118 |
st.metric("Density", f"{get_density(G):.3f}")
|
| 119 |
st.markdown("**Top hubs**")
|
| 120 |
+
for nid, score in get_top_hubs(G):
|
| 121 |
+
lbl = next((n.label for n in nodes if n.id==nid), nid)
|
| 122 |
+
st.write(f"- {lbl}: {score:.3f}")
|
| 123 |
|
| 124 |
+
# Visuals
|
| 125 |
+
with vis_tab:
|
| 126 |
years = [p.get("published","")[:4] for p in res["papers"] if p.get("published")]
|
| 127 |
if years:
|
| 128 |
st.plotly_chart(px.histogram(years, nbins=10, title="Publication Year"))
|
| 129 |
|
| 130 |
+
# Protocols
|
| 131 |
+
with proto_tab:
|
| 132 |
+
hyp = st.text_input("Enter hypothesis for protocol:", key="proto_q")
|
| 133 |
+
if st.button("Draft Protocol") and hyp.strip():
|
| 134 |
with st.spinner("Generating protocolβ¦"):
|
| 135 |
+
doc = asyncio.run(draft_protocol(
|
| 136 |
+
hyp, context=res["ai_summary"], llm=llm
|
| 137 |
))
|
| 138 |
st.subheader("Experimental Protocol")
|
| 139 |
+
st.write(doc)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|