Update mcp/orchestrator.py
Browse files- mcp/orchestrator.py +120 -154
mcp/orchestrator.py
CHANGED
@@ -1,161 +1,127 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
from
|
8 |
-
|
9 |
-
from
|
10 |
-
|
11 |
-
from mcp.
|
12 |
-
from mcp.
|
13 |
-
from mcp.
|
14 |
-
from mcp.
|
15 |
-
from mcp.
|
16 |
-
from mcp.
|
17 |
-
from mcp.
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
return
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
return
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
llm: Literal['openai', 'gemini'] = 'openai',
|
64 |
-
max_papers: int = 7,
|
65 |
-
max_trials: int = 10,
|
66 |
-
) -> Dict[str, Any]:
|
67 |
-
"""
|
68 |
-
Perform a comprehensive biomedical search pipeline with fault tolerance:
|
69 |
-
- Extract UMLS concepts and fetch definitions
|
70 |
-
- Literature (PubMed + arXiv)
|
71 |
-
- Drug safety, gene & variant info, disease-gene mapping
|
72 |
-
- Clinical trials, cBioPortal data
|
73 |
-
- AI-driven summary
|
74 |
-
|
75 |
-
Returns a dict with structured results ready for UI/graph building.
|
76 |
-
"""
|
77 |
-
# 1) Extract concepts and perform UMLS lookups
|
78 |
-
raw_concepts = await asyncio.to_thread(extract_umls_concepts, query)
|
79 |
-
umls_tasks = [
|
80 |
-
asyncio.create_task(
|
81 |
-
_safe_call(
|
82 |
-
lookup_umls,
|
83 |
-
term,
|
84 |
-
default={
|
85 |
-
'term': term,
|
86 |
-
'cui': None,
|
87 |
-
'name': None,
|
88 |
-
'definition': None,
|
89 |
-
},
|
90 |
-
)
|
91 |
-
)
|
92 |
-
for term in raw_concepts
|
93 |
-
]
|
94 |
-
|
95 |
-
# 2) Launch parallel data-fetch tasks (excluding UMLS)
|
96 |
-
tasks = {
|
97 |
-
'pubmed': asyncio.create_task(fetch_pubmed(query, max_results=max_papers)),
|
98 |
-
'arxiv': asyncio.create_task(fetch_arxiv(query, max_results=max_papers)),
|
99 |
-
'drug_safety': asyncio.create_task(_safe_call(fetch_drug_safety, query, default=[])),
|
100 |
-
'ncbi_gene': asyncio.create_task(_safe_call(search_gene, query, default=[])),
|
101 |
-
'mygene': asyncio.create_task(_safe_call(fetch_gene_info, query, default=[])),
|
102 |
-
'ensembl': asyncio.create_task(_safe_call(fetch_ensembl, query, default=[])),
|
103 |
-
'opentargets': asyncio.create_task(_safe_call(fetch_ot, query, default=[])),
|
104 |
-
'mesh': asyncio.create_task(_safe_call(get_mesh_definition, query, default="")),
|
105 |
-
'trials': asyncio.create_task(_safe_call(search_trials, query, default=[], max_studies=max_trials)),
|
106 |
-
'cbio': asyncio.create_task(_safe_call(fetch_cbio, query, default=[])),
|
107 |
-
'disgenet': asyncio.create_task(_safe_call(disease_to_genes, query, default=[])),
|
108 |
}
|
109 |
|
110 |
-
# 3) Await all tasks
|
111 |
-
results = await _gather_tasks(list(tasks.values()))
|
112 |
-
data = dict(zip(tasks.keys(), results))
|
113 |
-
umls_results = await asyncio.gather(*umls_tasks)
|
114 |
-
|
115 |
-
# 4) Consolidate gene sources
|
116 |
-
gene_sources = [data['ncbi_gene'], data['mygene'], data['ensembl'], data['opentargets']]
|
117 |
-
genes = _flatten_unique(gene_sources)
|
118 |
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
#
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
130 |
|
131 |
return {
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
}
|
143 |
|
144 |
-
|
145 |
-
async def answer_ai_question(
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
"""
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
return {'answer': answer}
|
|
|
1 |
+
"""
|
2 |
+
MedGenesis β dual-LLM orchestrator
|
3 |
+
----------------------------------
|
4 |
+
β’ Accepts llm = "openai" | "gemini" (falls back to OpenAI)
|
5 |
+
β’ Returns one unified dict the UI can rely on.
|
6 |
+
"""
|
7 |
+
from __future__ import annotations
|
8 |
+
import asyncio, itertools, logging
|
9 |
+
from typing import Dict, Any, List, Tuple
|
10 |
+
|
11 |
+
from mcp.arxiv import fetch_arxiv
|
12 |
+
from mcp.pubmed import fetch_pubmed
|
13 |
+
from mcp.ncbi import search_gene, get_mesh_definition
|
14 |
+
from mcp.mygene import fetch_gene_info
|
15 |
+
from mcp.ensembl import fetch_ensembl
|
16 |
+
from mcp.opentargets import fetch_ot
|
17 |
+
from mcp.umls import lookup_umls
|
18 |
+
from mcp.openfda import fetch_drug_safety
|
19 |
+
from mcp.disgenet import disease_to_genes
|
20 |
+
from mcp.clinicaltrials import search_trials
|
21 |
+
from mcp.cbio import fetch_cbio
|
22 |
+
from mcp.openai_utils import ai_summarize, ai_qa
|
23 |
+
from mcp.gemini import gemini_summarize, gemini_qa
|
24 |
+
|
25 |
+
log = logging.getLogger(__name__)
|
26 |
+
_DEF = "openai" # default engine
|
27 |
+
|
28 |
+
|
29 |
+
# βββββββββββββββββββββββββββββββββββ helpers βββββββββββββββββββββββββββββββββββ
|
30 |
+
def _llm_router(engine: str = _DEF) -> Tuple:
|
31 |
+
if engine.lower() == "gemini":
|
32 |
+
return gemini_summarize, gemini_qa, "gemini"
|
33 |
+
return ai_summarize, ai_qa, "openai"
|
34 |
+
|
35 |
+
async def _gather_safely(*aws, as_list: bool = True):
|
36 |
+
"""await gather() that converts Exception β RuntimeError placeholder"""
|
37 |
+
out = await asyncio.gather(*aws, return_exceptions=True)
|
38 |
+
if as_list:
|
39 |
+
# filter exceptions β keep structure but drop failures
|
40 |
+
return [x for x in out if not isinstance(x, Exception)]
|
41 |
+
return out
|
42 |
+
|
43 |
+
async def _gene_enrichment(keys: List[str]) -> Dict[str, Any]:
|
44 |
+
jobs = []
|
45 |
+
for k in keys:
|
46 |
+
jobs += [
|
47 |
+
search_gene(k), # basic gene info
|
48 |
+
get_mesh_definition(k), # MeSH definitions
|
49 |
+
fetch_gene_info(k), # MyGene
|
50 |
+
fetch_ensembl(k), # Ensembl x-refs
|
51 |
+
fetch_ot(k), # Open Targets associations
|
52 |
+
]
|
53 |
+
res = await _gather_safely(*jobs, as_list=False)
|
54 |
+
|
55 |
+
# slice & compress five-way fan-out
|
56 |
+
combo = lambda idx: [r for i, r in enumerate(res) if i % 5 == idx and r]
|
57 |
+
return {
|
58 |
+
"ncbi" : combo(0),
|
59 |
+
"mesh" : combo(1),
|
60 |
+
"mygene" : combo(2),
|
61 |
+
"ensembl" : combo(3),
|
62 |
+
"ot_assoc" : combo(4),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
}
|
64 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
|
66 |
+
# βββββββββββββββββββββββββββββββββ orchestrator ββββββββββββββββββββββββββββββββ
|
67 |
+
async def orchestrate_search(query: str, *, llm: str = _DEF) -> Dict[str, Any]:
|
68 |
+
"""Main entry β returns dict for the Streamlit UI"""
|
69 |
+
# 1 Literature β run in parallel
|
70 |
+
arxiv_task = asyncio.create_task(fetch_arxiv(query))
|
71 |
+
pubmed_task = asyncio.create_task(fetch_pubmed(query))
|
72 |
+
papers_raw = await _gather_safely(arxiv_task, pubmed_task)
|
73 |
+
papers = list(itertools.chain.from_iterable(papers_raw))[:30] # keep β€30
|
74 |
+
|
75 |
+
# 2 Keyword extraction (very light β only from abstracts)
|
76 |
+
kws = {w for p in papers for w in (p["summary"][:500].split()) if w.isalpha()}
|
77 |
+
kws = list(kws)[:10] # coarse, fast -> 10 seeds
|
78 |
+
|
79 |
+
# 3 Bio-enrichment fan-out
|
80 |
+
umls_f = [_safe_task(lookup_umls, k) for k in kws]
|
81 |
+
fda_f = [_safe_task(fetch_drug_safety, k) for k in kws]
|
82 |
+
gene_bundle = asyncio.create_task(_gene_enrichment(kws))
|
83 |
+
trials_task = asyncio.create_task(search_trials(query, max_studies=20))
|
84 |
+
cbio_task = asyncio.create_task(fetch_cbio(kws[0] if kws else ""))
|
85 |
+
|
86 |
+
umls, fda, gene_dat, trials, variants = await asyncio.gather(
|
87 |
+
_gather_safely(*umls_f),
|
88 |
+
_gather_safely(*fda_f),
|
89 |
+
gene_bundle,
|
90 |
+
trials_task,
|
91 |
+
cbio_task,
|
92 |
+
)
|
93 |
+
|
94 |
+
# 4 LLM summary
|
95 |
+
summarise_fn, _, engine = _llm_router(llm)
|
96 |
+
summary = await summarise_fn(" ".join(p["summary"] for p in papers)[:12000])
|
97 |
|
98 |
return {
|
99 |
+
"papers" : papers,
|
100 |
+
"umls" : umls,
|
101 |
+
"drug_safety" : fda,
|
102 |
+
"ai_summary" : summary,
|
103 |
+
"llm_used" : engine,
|
104 |
+
"genes" : gene_dat["ncbi"] + gene_dat["ensembl"] + gene_dat["mygene"],
|
105 |
+
"mesh_defs" : gene_dat["mesh"],
|
106 |
+
"gene_disease" : gene_dat["ot_assoc"],
|
107 |
+
"clinical_trials" : trials,
|
108 |
+
"variants" : variants or [],
|
109 |
}
|
110 |
|
111 |
+
# βββββββββββββββββββββββββββββββ follow-up QA βββββββββββββββββββββββββββββββββ
|
112 |
+
async def answer_ai_question(question: str, *, context: str, llm: str = _DEF) -> Dict[str, str]:
|
113 |
+
"""Follow-up QA using chosen LLM."""
|
114 |
+
_, qa_fn, _ = _llm_router(llm)
|
115 |
+
return {"answer": await qa_fn(f"Q: {question}\nContext: {context}\nA:")}
|
116 |
+
|
117 |
+
|
118 |
+
# βββββββββββββββββββββββββββ internal util βββββββββββββββββββββββββββββββββββ
|
119 |
+
def _safe_task(fn, *args):
|
120 |
+
"""Helper to wrap callable β Task returning RuntimeError on exception."""
|
121 |
+
async def _wrapper():
|
122 |
+
try:
|
123 |
+
return await fn(*args)
|
124 |
+
except Exception as exc:
|
125 |
+
log.warning("background task %s failed: %s", fn.__name__, exc)
|
126 |
+
return RuntimeError(str(exc))
|
127 |
+
return asyncio.create_task(_wrapper())
|
|