Update mcp/gemini.py
Browse files- mcp/gemini.py +51 -37
mcp/gemini.py
CHANGED
@@ -1,54 +1,68 @@
|
|
1 |
-
|
2 |
-
Gemini
|
3 |
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
|
|
|
|
|
|
|
|
8 |
"""
|
|
|
|
|
|
|
|
|
9 |
|
10 |
-
import
|
11 |
from google.api_core import exceptions as gexc
|
12 |
|
13 |
-
|
14 |
-
if
|
15 |
-
|
16 |
|
17 |
-
|
18 |
-
_MODELS = {}
|
19 |
|
|
|
|
|
|
|
|
|
20 |
def _get_model(name: str):
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
#
|
40 |
-
|
41 |
-
|
42 |
-
|
|
|
|
|
|
|
|
|
43 |
out = await _generate(prompt, "gemini-1.5-flash")
|
44 |
if not out:
|
45 |
out = await _generate(prompt, "gemini-pro")
|
46 |
return out
|
47 |
|
48 |
-
|
49 |
-
async def gemini_qa(question: str, context: str = "") -> str:
|
50 |
prompt = (
|
51 |
-
"Use the context to answer concisely.\n\n"
|
52 |
f"Context:\n{context[:10000]}\n\nQ: {question}\nA:"
|
53 |
)
|
54 |
out = await _generate(prompt, "gemini-1.5-flash")
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
"""MedGenesis – **Gemini** (Google Generative AI) async helper.
|
3 |
|
4 |
+
Key behaviours
|
5 |
+
~~~~~~~~~~~~~~
|
6 |
+
* Tries the fast **`gemini-1.5-flash`** model first → falls back to
|
7 |
+
**`gemini-pro`** when flash unavailable or quota‑exceeded.
|
8 |
+
* Exponential back‑off retry (2×, 4×) for transient 5xx/429.
|
9 |
+
* Singleton model cache to avoid re‑instantiation cost.
|
10 |
+
* Returns **empty string** on irrecoverable errors so orchestrator can
|
11 |
+
gracefully pivot to OpenAI.
|
12 |
"""
|
13 |
+
from __future__ import annotations
|
14 |
+
|
15 |
+
import os, asyncio, functools
|
16 |
+
from typing import Dict
|
17 |
|
18 |
+
import google.generativeai as genai
|
19 |
from google.api_core import exceptions as gexc
|
20 |
|
21 |
+
_API_KEY = os.getenv("GEMINI_KEY")
|
22 |
+
if not _API_KEY:
|
23 |
+
raise RuntimeError("GEMINI_KEY env variable missing – set it in HF Secrets")
|
24 |
|
25 |
+
genai.configure(api_key=_API_KEY)
|
|
|
26 |
|
27 |
+
# ---------------------------------------------------------------------
|
28 |
+
# Model cache
|
29 |
+
# ---------------------------------------------------------------------
|
30 |
+
@functools.lru_cache(maxsize=4)
|
31 |
def _get_model(name: str):
|
32 |
+
return genai.GenerativeModel(name)
|
33 |
+
|
34 |
+
|
35 |
+
async def _generate(prompt: str, model_name: str, *, temperature: float = 0.3, retries: int = 3) -> str:
|
36 |
+
"""Run generation inside a ThreadPool – Gemini SDK is blocking."""
|
37 |
+
delay = 2
|
38 |
+
for _ in range(retries):
|
39 |
+
try:
|
40 |
+
resp = await asyncio.to_thread(
|
41 |
+
_get_model(model_name).generate_content,
|
42 |
+
prompt,
|
43 |
+
generation_config={"temperature": temperature},
|
44 |
+
)
|
45 |
+
return resp.text.strip()
|
46 |
+
except (gexc.ResourceExhausted, gexc.ServiceUnavailable):
|
47 |
+
await asyncio.sleep(delay)
|
48 |
+
delay *= 2
|
49 |
+
except (gexc.NotFound, gexc.PermissionDenied):
|
50 |
+
return "" # unrecoverable – model/key unavailable
|
51 |
+
return "" # after retries
|
52 |
+
|
53 |
+
# ---------------------------------------------------------------------
|
54 |
+
# Public wrappers
|
55 |
+
# ---------------------------------------------------------------------
|
56 |
+
async def gemini_summarize(text: str, *, words: int = 150) -> str:
|
57 |
+
prompt = f"Summarize in ≤{words} words:\n\n{text[:12000]}"
|
58 |
out = await _generate(prompt, "gemini-1.5-flash")
|
59 |
if not out:
|
60 |
out = await _generate(prompt, "gemini-pro")
|
61 |
return out
|
62 |
|
63 |
+
async def gemini_qa(question: str, *, context: str = "") -> str:
|
|
|
64 |
prompt = (
|
65 |
+
"You are an advanced biomedical research agent. Use the context to answer concisely.\n\n"
|
66 |
f"Context:\n{context[:10000]}\n\nQ: {question}\nA:"
|
67 |
)
|
68 |
out = await _generate(prompt, "gemini-1.5-flash")
|