Update mcp/orchestrator.py
Browse files- mcp/orchestrator.py +64 -24
mcp/orchestrator.py
CHANGED
@@ -9,7 +9,7 @@ MedGenesis – dual-LLM orchestrator (v5)
|
|
9 |
|
10 |
from __future__ import annotations
|
11 |
import asyncio, itertools, logging
|
12 |
-
from typing import Dict, Any, List
|
13 |
|
14 |
from mcp.arxiv import fetch_arxiv
|
15 |
from mcp.pubmed import fetch_pubmed
|
@@ -29,15 +29,19 @@ log = logging.getLogger(__name__)
|
|
29 |
_DEFAULT_LLM = "openai"
|
30 |
|
31 |
|
32 |
-
def _llm_router(engine: str = _DEFAULT_LLM):
|
|
|
33 |
if engine.lower() == "gemini":
|
34 |
return gemini_summarize, gemini_qa, "gemini"
|
35 |
return ai_summarize, ai_qa, "openai"
|
36 |
|
37 |
|
38 |
async def _safe_gather(*tasks, return_exceptions: bool = False):
|
|
|
|
|
|
|
39 |
results = await asyncio.gather(*tasks, return_exceptions=True)
|
40 |
-
cleaned = []
|
41 |
for r in results:
|
42 |
if isinstance(r, Exception):
|
43 |
log.warning("Task failed: %s", r)
|
@@ -49,7 +53,16 @@ async def _safe_gather(*tasks, return_exceptions: bool = False):
|
|
49 |
|
50 |
|
51 |
async def _gene_enrichment(keys: List[str]) -> Dict[str, Any]:
|
52 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
for k in keys:
|
54 |
jobs.extend([
|
55 |
asyncio.create_task(search_gene(k)),
|
@@ -58,9 +71,11 @@ async def _gene_enrichment(keys: List[str]) -> Dict[str, Any]:
|
|
58 |
asyncio.create_task(fetch_ensembl(k)),
|
59 |
asyncio.create_task(fetch_ot(k)),
|
60 |
])
|
61 |
-
|
62 |
-
|
63 |
-
def bucket(
|
|
|
|
|
64 |
return {
|
65 |
"ncbi": bucket(0),
|
66 |
"mesh": bucket(1),
|
@@ -71,22 +86,35 @@ async def _gene_enrichment(keys: List[str]) -> Dict[str, Any]:
|
|
71 |
|
72 |
|
73 |
async def orchestrate_search(query: str, llm: str = _DEFAULT_LLM) -> Dict[str, Any]:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
# 1) Literature
|
75 |
-
|
76 |
-
|
77 |
-
papers_raw = await _safe_gather(
|
78 |
papers = list(itertools.chain.from_iterable(papers_raw))[:30]
|
79 |
|
80 |
-
# 2)
|
81 |
seeds = {
|
82 |
-
w
|
|
|
|
|
|
|
83 |
}
|
84 |
seeds = list(seeds)[:10]
|
85 |
|
86 |
-
# 3)
|
87 |
umls_tasks = [asyncio.create_task(lookup_umls(k)) for k in seeds]
|
88 |
fda_tasks = [asyncio.create_task(fetch_drug_safety(k)) for k in seeds]
|
89 |
-
|
90 |
trials_t = asyncio.create_task(fetch_clinical_trials(query, max_studies=10))
|
91 |
cbio_t = asyncio.create_task(
|
92 |
fetch_cbio_variants(seeds[0]) if seeds else asyncio.sleep(0, result=[])
|
@@ -95,12 +123,12 @@ async def orchestrate_search(query: str, llm: str = _DEFAULT_LLM) -> Dict[str, A
|
|
95 |
umls_list, fda_list, gene_data, trials, variants = await asyncio.gather(
|
96 |
_safe_gather(*umls_tasks, return_exceptions=True),
|
97 |
_safe_gather(*fda_tasks, return_exceptions=True),
|
98 |
-
|
99 |
trials_t,
|
100 |
cbio_t,
|
101 |
)
|
102 |
|
103 |
-
# 4)
|
104 |
genes = {
|
105 |
g["symbol"]
|
106 |
for src in (gene_data["ncbi"], gene_data["mygene"], gene_data["ensembl"], gene_data["ot_assoc"])
|
@@ -108,22 +136,31 @@ async def orchestrate_search(query: str, llm: str = _DEFAULT_LLM) -> Dict[str, A
|
|
108 |
}
|
109 |
genes = list(genes)
|
110 |
|
111 |
-
# 5)
|
112 |
-
seen = set()
|
|
|
113 |
for v in variants or []:
|
114 |
-
key = (
|
|
|
|
|
|
|
|
|
|
|
115 |
if key not in seen:
|
116 |
-
seen.add(key)
|
|
|
117 |
|
118 |
-
# 6) LLM summary
|
119 |
-
|
120 |
combined = " ".join(p.get("summary", "") for p in papers)
|
121 |
-
ai_summary = await
|
122 |
|
123 |
return {
|
124 |
"papers": papers,
|
125 |
"umls": [u for u in umls_list if not isinstance(u, Exception)],
|
126 |
-
"drug_safety": list(
|
|
|
|
|
127 |
"clinical_trials": trials or [],
|
128 |
"variants": unique_vars,
|
129 |
"genes": gene_data["ncbi"] + gene_data["ensembl"] + gene_data["mygene"],
|
@@ -135,6 +172,9 @@ async def orchestrate_search(query: str, llm: str = _DEFAULT_LLM) -> Dict[str, A
|
|
135 |
|
136 |
|
137 |
async def answer_ai_question(question: str, context: str, llm: str = _DEFAULT_LLM) -> Dict[str, str]:
|
|
|
|
|
|
|
138 |
_, qa_fn, _ = _llm_router(llm)
|
139 |
prompt = f"Q: {question}\nContext: {context}\nA:"
|
140 |
try:
|
|
|
9 |
|
10 |
from __future__ import annotations
|
11 |
import asyncio, itertools, logging
|
12 |
+
from typing import Dict, Any, List, Tuple
|
13 |
|
14 |
from mcp.arxiv import fetch_arxiv
|
15 |
from mcp.pubmed import fetch_pubmed
|
|
|
29 |
_DEFAULT_LLM = "openai"
|
30 |
|
31 |
|
32 |
+
def _llm_router(engine: str = _DEFAULT_LLM) -> Tuple:
|
33 |
+
"""Choose summarization and QA functions based on engine name."""
|
34 |
if engine.lower() == "gemini":
|
35 |
return gemini_summarize, gemini_qa, "gemini"
|
36 |
return ai_summarize, ai_qa, "openai"
|
37 |
|
38 |
|
39 |
async def _safe_gather(*tasks, return_exceptions: bool = False):
|
40 |
+
"""
|
41 |
+
Await multiple coroutines, log any exceptions, and optionally return them.
|
42 |
+
"""
|
43 |
results = await asyncio.gather(*tasks, return_exceptions=True)
|
44 |
+
cleaned: List[Any] = []
|
45 |
for r in results:
|
46 |
if isinstance(r, Exception):
|
47 |
log.warning("Task failed: %s", r)
|
|
|
53 |
|
54 |
|
55 |
async def _gene_enrichment(keys: List[str]) -> Dict[str, Any]:
|
56 |
+
"""
|
57 |
+
Fan-out gene-related endpoints for each seed keyword:
|
58 |
+
- NCBI gene lookup
|
59 |
+
- MeSH definition
|
60 |
+
- MyGene.info
|
61 |
+
- Ensembl cross-refs
|
62 |
+
- OpenTargets associations
|
63 |
+
Returns a dict of results.
|
64 |
+
"""
|
65 |
+
jobs: List[asyncio.Task] = []
|
66 |
for k in keys:
|
67 |
jobs.extend([
|
68 |
asyncio.create_task(search_gene(k)),
|
|
|
71 |
asyncio.create_task(fetch_ensembl(k)),
|
72 |
asyncio.create_task(fetch_ot(k)),
|
73 |
])
|
74 |
+
results = await _safe_gather(*jobs, return_exceptions=True)
|
75 |
+
|
76 |
+
def bucket(idx: int) -> List[Any]:
|
77 |
+
return [res for i, res in enumerate(results) if i % 5 == idx and not isinstance(res, Exception)]
|
78 |
+
|
79 |
return {
|
80 |
"ncbi": bucket(0),
|
81 |
"mesh": bucket(1),
|
|
|
86 |
|
87 |
|
88 |
async def orchestrate_search(query: str, llm: str = _DEFAULT_LLM) -> Dict[str, Any]:
|
89 |
+
"""
|
90 |
+
Main entry point. Performs:
|
91 |
+
1. Literature fetch (PubMed + arXiv)
|
92 |
+
2. Keyword seed extraction
|
93 |
+
3. Bio-enrichment (UMLS, OpenFDA, gene services)
|
94 |
+
4. Clinical trials lookup
|
95 |
+
5. cBioPortal variants
|
96 |
+
6. AI LLM summary
|
97 |
+
Returns a unified dict for the UI.
|
98 |
+
"""
|
99 |
# 1) Literature
|
100 |
+
pubmed_t = asyncio.create_task(fetch_pubmed(query, max_results=7))
|
101 |
+
arxiv_t = asyncio.create_task(fetch_arxiv(query, max_results=7))
|
102 |
+
papers_raw = await _safe_gather(pubmed_t, arxiv_t)
|
103 |
papers = list(itertools.chain.from_iterable(papers_raw))[:30]
|
104 |
|
105 |
+
# 2) Seed keywords
|
106 |
seeds = {
|
107 |
+
w.strip()
|
108 |
+
for p in papers
|
109 |
+
for w in p.get("summary", "")[:500].split()
|
110 |
+
if w.isalpha()
|
111 |
}
|
112 |
seeds = list(seeds)[:10]
|
113 |
|
114 |
+
# 3) Bio-enrichment fan-out
|
115 |
umls_tasks = [asyncio.create_task(lookup_umls(k)) for k in seeds]
|
116 |
fda_tasks = [asyncio.create_task(fetch_drug_safety(k)) for k in seeds]
|
117 |
+
gene_task = asyncio.create_task(_gene_enrichment(seeds))
|
118 |
trials_t = asyncio.create_task(fetch_clinical_trials(query, max_studies=10))
|
119 |
cbio_t = asyncio.create_task(
|
120 |
fetch_cbio_variants(seeds[0]) if seeds else asyncio.sleep(0, result=[])
|
|
|
123 |
umls_list, fda_list, gene_data, trials, variants = await asyncio.gather(
|
124 |
_safe_gather(*umls_tasks, return_exceptions=True),
|
125 |
_safe_gather(*fda_tasks, return_exceptions=True),
|
126 |
+
gene_task,
|
127 |
trials_t,
|
128 |
cbio_t,
|
129 |
)
|
130 |
|
131 |
+
# 4) Deduplicate gene symbols from enrichment
|
132 |
genes = {
|
133 |
g["symbol"]
|
134 |
for src in (gene_data["ncbi"], gene_data["mygene"], gene_data["ensembl"], gene_data["ot_assoc"])
|
|
|
136 |
}
|
137 |
genes = list(genes)
|
138 |
|
139 |
+
# 5) Deduplicate variants by genomic coordinates
|
140 |
+
seen: set = set()
|
141 |
+
unique_vars: List[dict] = []
|
142 |
for v in variants or []:
|
143 |
+
key = (
|
144 |
+
v.get("chromosome"),
|
145 |
+
v.get("startPosition"),
|
146 |
+
v.get("referenceAllele"),
|
147 |
+
v.get("variantAllele"),
|
148 |
+
)
|
149 |
if key not in seen:
|
150 |
+
seen.add(key)
|
151 |
+
unique_vars.append(v)
|
152 |
|
153 |
+
# 6) LLM-driven summary
|
154 |
+
summarize_fn, _, engine_used = _llm_router(llm)
|
155 |
combined = " ".join(p.get("summary", "") for p in papers)
|
156 |
+
ai_summary = await summarize_fn(combined[:12000])
|
157 |
|
158 |
return {
|
159 |
"papers": papers,
|
160 |
"umls": [u for u in umls_list if not isinstance(u, Exception)],
|
161 |
+
"drug_safety": list(
|
162 |
+
itertools.chain.from_iterable(dfa for dfa in fda_list if isinstance(dfa, list))
|
163 |
+
),
|
164 |
"clinical_trials": trials or [],
|
165 |
"variants": unique_vars,
|
166 |
"genes": gene_data["ncbi"] + gene_data["ensembl"] + gene_data["mygene"],
|
|
|
172 |
|
173 |
|
174 |
async def answer_ai_question(question: str, context: str, llm: str = _DEFAULT_LLM) -> Dict[str, str]:
|
175 |
+
"""
|
176 |
+
Follow-up QA: uses the designated QA function from the LLM router.
|
177 |
+
"""
|
178 |
_, qa_fn, _ = _llm_router(llm)
|
179 |
prompt = f"Q: {question}\nContext: {context}\nA:"
|
180 |
try:
|