Update mcp/orchestrator.py
Browse files- mcp/orchestrator.py +46 -46
mcp/orchestrator.py
CHANGED
@@ -1,11 +1,12 @@
|
|
1 |
#!/usr/bin/env python3
|
2 |
-
"""MedGenesis β orchestrator (v4,
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
|
|
9 |
"""
|
10 |
from __future__ import annotations
|
11 |
|
@@ -13,15 +14,15 @@ import asyncio
|
|
13 |
from typing import Any, Dict, List
|
14 |
|
15 |
# ββ async fetchers ββββββββββββββββββββββββββββββββββββββββββββββββββ
|
16 |
-
from mcp.arxiv
|
17 |
-
from mcp.pubmed
|
18 |
-
from mcp.nlp
|
19 |
-
from mcp.umls
|
20 |
-
from mcp.openfda
|
21 |
-
from mcp.ncbi
|
22 |
from mcp.disgenet import disease_to_genes
|
23 |
-
from mcp.mygene
|
24 |
-
from mcp.ctgov
|
25 |
|
26 |
# ββ LLM helpers ββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
27 |
from mcp.openai_utils import ai_summarize, ai_qa
|
@@ -30,7 +31,7 @@ from mcp.gemini import gemini_summarize, gemini_qa
|
|
30 |
# ------------------------------------------------------------------
|
31 |
# LLM router
|
32 |
# ------------------------------------------------------------------
|
33 |
-
|
34 |
|
35 |
def _llm_router(name: str | None):
|
36 |
if name and name.lower() == "gemini":
|
@@ -38,16 +39,16 @@ def _llm_router(name: str | None):
|
|
38 |
return ai_summarize, ai_qa, "openai"
|
39 |
|
40 |
# ------------------------------------------------------------------
|
41 |
-
# Keyword enrichment bundle
|
42 |
# ------------------------------------------------------------------
|
43 |
async def _enrich_keywords(keys: List[str]) -> Dict[str, Any]:
|
44 |
-
|
45 |
for k in keys:
|
46 |
-
|
47 |
|
48 |
-
res = await asyncio.gather(*
|
49 |
|
50 |
-
genes,
|
51 |
for idx, r in enumerate(res):
|
52 |
if isinstance(r, Exception):
|
53 |
continue
|
@@ -55,50 +56,51 @@ async def _enrich_keywords(keys: List[str]) -> Dict[str, Any]:
|
|
55 |
if bucket == 0:
|
56 |
genes.extend(r)
|
57 |
elif bucket == 1:
|
58 |
-
|
59 |
else:
|
60 |
disg.extend(r)
|
61 |
-
return {"genes": genes, "meshes":
|
62 |
|
63 |
# ------------------------------------------------------------------
|
64 |
-
#
|
65 |
# ------------------------------------------------------------------
|
66 |
-
async def orchestrate_search(query: str, *, llm: str =
|
67 |
-
"""
|
68 |
# 1) Literature --------------------------------------------------
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
|
|
77 |
corpus = " ".join(p.get("summary", "") for p in papers)
|
78 |
keywords = extract_keywords(corpus)[:8]
|
79 |
|
80 |
-
# 3)
|
81 |
umls_f = [lookup_umls(k) for k in keywords]
|
82 |
fda_f = [fetch_drug_safety(k) for k in keywords]
|
83 |
ncbi_f = asyncio.create_task(_enrich_keywords(keywords))
|
84 |
-
|
85 |
trials_f = asyncio.create_task(search_trials(query, max_studies=20))
|
86 |
|
87 |
umls, fda, ncbi, mygene, trials = await asyncio.gather(
|
88 |
asyncio.gather(*umls_f, return_exceptions=True),
|
89 |
asyncio.gather(*fda_f, return_exceptions=True),
|
90 |
ncbi_f,
|
91 |
-
|
92 |
trials_f,
|
93 |
)
|
94 |
|
95 |
-
#
|
96 |
umls = [u for u in umls if isinstance(u, dict)]
|
97 |
-
fda = [d for d in fda
|
98 |
|
99 |
# 4) LLM summary -------------------------------------------------
|
100 |
-
|
101 |
-
ai_summary = await
|
102 |
|
103 |
# 5) Assemble payload -------------------------------------------
|
104 |
return {
|
@@ -107,16 +109,14 @@ async def orchestrate_search(query: str, *, llm: str = _DEF) -> Dict[str, Any]:
|
|
107 |
"drug_safety" : fda,
|
108 |
"ai_summary" : ai_summary,
|
109 |
"llm_used" : engine,
|
110 |
-
# gene context
|
111 |
"genes" : (ncbi["genes"] or []) + ([mygene] if mygene else []),
|
112 |
"mesh_defs" : ncbi["meshes"],
|
113 |
"gene_disease" : ncbi["disgenet"],
|
114 |
-
# trials
|
115 |
"clinical_trials": trials,
|
116 |
}
|
117 |
|
118 |
# ------------------------------------------------------------------
|
119 |
-
async def answer_ai_question(question: str, *, context: str, llm: str =
|
120 |
-
"""Followβup QA using
|
121 |
_, qa_fn, _ = _llm_router(llm)
|
122 |
-
return {"answer": await qa_fn(question, context)}
|
|
|
1 |
#!/usr/bin/env python3
|
2 |
+
"""MedGenesis β orchestrator (v4.1, contextβsafe)
|
3 |
+
|
4 |
+
Runs an async pipeline that fetches literature, enriches with biomedical
|
5 |
+
APIs, and summarises via either OpenAI or Gemini. Fully resilient:
|
6 |
+
β’ HTTPS arXiv
|
7 |
+
β’ 403βproof ClinicalTrials.gov helper
|
8 |
+
β’ Filters out failed enrichment calls so UI never crashes
|
9 |
+
β’ Followβup QA passes `context=` kwarg (fixes TypeError)
|
10 |
"""
|
11 |
from __future__ import annotations
|
12 |
|
|
|
14 |
from typing import Any, Dict, List
|
15 |
|
16 |
# ββ async fetchers ββββββββββββββββββββββββββββββββββββββββββββββββββ
|
17 |
+
from mcp.arxiv import fetch_arxiv
|
18 |
+
from mcp.pubmed import fetch_pubmed
|
19 |
+
from mcp.nlp import extract_keywords
|
20 |
+
from mcp.umls import lookup_umls
|
21 |
+
from mcp.openfda import fetch_drug_safety
|
22 |
+
from mcp.ncbi import search_gene, get_mesh_definition
|
23 |
from mcp.disgenet import disease_to_genes
|
24 |
+
from mcp.mygene import fetch_gene_info
|
25 |
+
from mcp.ctgov import search_trials # v2βv1 helper
|
26 |
|
27 |
# ββ LLM helpers ββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
28 |
from mcp.openai_utils import ai_summarize, ai_qa
|
|
|
31 |
# ------------------------------------------------------------------
|
32 |
# LLM router
|
33 |
# ------------------------------------------------------------------
|
34 |
+
_DEF_LLM = "openai"
|
35 |
|
36 |
def _llm_router(name: str | None):
|
37 |
if name and name.lower() == "gemini":
|
|
|
39 |
return ai_summarize, ai_qa, "openai"
|
40 |
|
41 |
# ------------------------------------------------------------------
|
42 |
+
# Keyword enrichment bundle (NCBI / MeSH / DisGeNET)
|
43 |
# ------------------------------------------------------------------
|
44 |
async def _enrich_keywords(keys: List[str]) -> Dict[str, Any]:
|
45 |
+
jobs: List[asyncio.Future] = []
|
46 |
for k in keys:
|
47 |
+
jobs += [search_gene(k), get_mesh_definition(k), disease_to_genes(k)]
|
48 |
|
49 |
+
res = await asyncio.gather(*jobs, return_exceptions=True)
|
50 |
|
51 |
+
genes, meshes, disg = [], [], []
|
52 |
for idx, r in enumerate(res):
|
53 |
if isinstance(r, Exception):
|
54 |
continue
|
|
|
56 |
if bucket == 0:
|
57 |
genes.extend(r)
|
58 |
elif bucket == 1:
|
59 |
+
meshes.append(r)
|
60 |
else:
|
61 |
disg.extend(r)
|
62 |
+
return {"genes": genes, "meshes": meshes, "disgenet": disg}
|
63 |
|
64 |
# ------------------------------------------------------------------
|
65 |
+
# Orchestrator main
|
66 |
# ------------------------------------------------------------------
|
67 |
+
async def orchestrate_search(query: str, *, llm: str = _DEF_LLM) -> Dict[str, Any]:
|
68 |
+
"""Fetch + enrich + summarise; returns dict for Streamlit UI."""
|
69 |
# 1) Literature --------------------------------------------------
|
70 |
+
arxiv_task = asyncio.create_task(fetch_arxiv(query, max_results=10))
|
71 |
+
pubmed_task = asyncio.create_task(fetch_pubmed(query, max_results=10))
|
72 |
+
|
73 |
+
papers: List[Dict] = []
|
74 |
+
for res in await asyncio.gather(arxiv_task, pubmed_task, return_exceptions=True):
|
75 |
+
if not isinstance(res, Exception):
|
76 |
+
papers.extend(res)
|
77 |
+
|
78 |
+
# 2) Keyword extraction -----------------------------------------
|
79 |
corpus = " ".join(p.get("summary", "") for p in papers)
|
80 |
keywords = extract_keywords(corpus)[:8]
|
81 |
|
82 |
+
# 3) Enrichment fanβout -----------------------------------------
|
83 |
umls_f = [lookup_umls(k) for k in keywords]
|
84 |
fda_f = [fetch_drug_safety(k) for k in keywords]
|
85 |
ncbi_f = asyncio.create_task(_enrich_keywords(keywords))
|
86 |
+
gene_f = asyncio.create_task(fetch_gene_info(query))
|
87 |
trials_f = asyncio.create_task(search_trials(query, max_studies=20))
|
88 |
|
89 |
umls, fda, ncbi, mygene, trials = await asyncio.gather(
|
90 |
asyncio.gather(*umls_f, return_exceptions=True),
|
91 |
asyncio.gather(*fda_f, return_exceptions=True),
|
92 |
ncbi_f,
|
93 |
+
gene_f,
|
94 |
trials_f,
|
95 |
)
|
96 |
|
97 |
+
# filter out failed calls --------------------------------------
|
98 |
umls = [u for u in umls if isinstance(u, dict)]
|
99 |
+
fda = [d for d in fda if isinstance(d, (dict, list))]
|
100 |
|
101 |
# 4) LLM summary -------------------------------------------------
|
102 |
+
summarize_fn, _, engine = _llm_router(llm)
|
103 |
+
ai_summary = await summarize_fn(corpus) if corpus else ""
|
104 |
|
105 |
# 5) Assemble payload -------------------------------------------
|
106 |
return {
|
|
|
109 |
"drug_safety" : fda,
|
110 |
"ai_summary" : ai_summary,
|
111 |
"llm_used" : engine,
|
|
|
112 |
"genes" : (ncbi["genes"] or []) + ([mygene] if mygene else []),
|
113 |
"mesh_defs" : ncbi["meshes"],
|
114 |
"gene_disease" : ncbi["disgenet"],
|
|
|
115 |
"clinical_trials": trials,
|
116 |
}
|
117 |
|
118 |
# ------------------------------------------------------------------
|
119 |
+
async def answer_ai_question(question: str, *, context: str, llm: str = _DEF_LLM) -> Dict[str, str]:
|
120 |
+
"""Followβup QA using selected LLM (context kwarg fixed)."""
|
121 |
_, qa_fn, _ = _llm_router(llm)
|
122 |
+
return {"answer": await qa_fn(question, context=context)}
|