Update app.py
Browse files
app.py
CHANGED
@@ -1,262 +1,41 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
""
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
from mcp.workspace import get_workspace, save_query
|
26 |
-
from mcp.knowledge_graph import build_agraph
|
27 |
-
from mcp.graph_metrics import build_nx, get_top_hubs, get_density
|
28 |
-
from mcp.alerts import check_alerts
|
29 |
-
|
30 |
-
# Streamlit telemetry directory → /tmp
|
31 |
-
os.environ.update({
|
32 |
-
"STREAMLIT_DATA_DIR": "/tmp/.streamlit",
|
33 |
-
"XDG_STATE_HOME": "/tmp",
|
34 |
-
"STREAMLIT_BROWSER_GATHERUSAGESTATS": "false",
|
35 |
-
})
|
36 |
-
pathlib.Path("/tmp/.streamlit").mkdir(parents=True, exist_ok=True)
|
37 |
-
|
38 |
-
ROOT = Path(__file__).parent
|
39 |
-
LOGO = ROOT / "assets" / "logo.png"
|
40 |
-
|
41 |
-
|
42 |
-
def _latin1_safe(txt: str) -> str:
|
43 |
-
"""Coerce UTF-8 → Latin-1 with replacement (for FPDF)."""
|
44 |
-
return txt.encode("latin-1", "replace").decode("latin-1")
|
45 |
-
|
46 |
-
|
47 |
-
def _pdf(papers: list[dict]) -> bytes:
|
48 |
-
pdf = FPDF()
|
49 |
-
pdf.set_auto_page_break(auto=True, margin=15)
|
50 |
-
pdf.add_page()
|
51 |
-
pdf.set_font("Helvetica", size=11)
|
52 |
-
pdf.cell(200, 8, _latin1_safe("MedGenesis AI – Results"), ln=True, align="C")
|
53 |
-
pdf.ln(3)
|
54 |
-
for i, p in enumerate(papers, 1):
|
55 |
-
pdf.set_font("Helvetica", "B", 11)
|
56 |
-
pdf.multi_cell(0, 7, _latin1_safe(f"{i}. {p.get('title','')}"))
|
57 |
-
pdf.set_font("Helvetica", "", 9)
|
58 |
-
body = (
|
59 |
-
f"{p.get('authors','')}\n"
|
60 |
-
f"{p.get('summary','')}\n"
|
61 |
-
f"{p.get('link','')}\n"
|
62 |
-
)
|
63 |
-
pdf.multi_cell(0, 6, _latin1_safe(body))
|
64 |
-
pdf.ln(1)
|
65 |
-
return pdf.output(dest="S").encode("latin-1", "replace")
|
66 |
-
|
67 |
-
|
68 |
-
def _workspace_sidebar():
|
69 |
-
with st.sidebar:
|
70 |
-
st.header("🗂️ Workspace")
|
71 |
-
ws = get_workspace()
|
72 |
-
if not ws:
|
73 |
-
st.info("Run a search then press **Save** to populate this list.")
|
74 |
-
return
|
75 |
-
for i, item in enumerate(ws, 1):
|
76 |
-
with st.expander(f"{i}. {item['query']}"):
|
77 |
-
st.write(item['result']['ai_summary'])
|
78 |
-
|
79 |
-
|
80 |
-
def render_ui():
|
81 |
-
st.set_page_config("MedGenesis AI", layout="wide")
|
82 |
-
|
83 |
-
# Session-state defaults
|
84 |
-
defaults = dict(
|
85 |
-
query_result=None,
|
86 |
-
followup_input="",
|
87 |
-
followup_response=None,
|
88 |
-
last_query="",
|
89 |
-
last_llm="openai",
|
90 |
-
)
|
91 |
-
for k, v in defaults.items():
|
92 |
-
st.session_state.setdefault(k, v)
|
93 |
-
|
94 |
-
_workspace_sidebar()
|
95 |
-
|
96 |
-
# Header
|
97 |
-
col1, col2 = st.columns([0.15, 0.85])
|
98 |
-
with col1:
|
99 |
-
if LOGO.exists():
|
100 |
-
st.image(str(LOGO), width=105)
|
101 |
-
with col2:
|
102 |
-
st.markdown("## 🧬 **MedGenesis AI**")
|
103 |
-
st.caption("Multi-source biomedical assistant · OpenAI / Gemini")
|
104 |
-
|
105 |
-
# Controls
|
106 |
-
engine = st.radio("LLM engine", ["openai", "gemini"], horizontal=True)
|
107 |
-
query = st.text_input("Enter biomedical question", placeholder="e.g. CRISPR glioblastoma therapy")
|
108 |
-
|
109 |
-
# Alerts
|
110 |
-
if get_workspace():
|
111 |
-
try:
|
112 |
-
alerts = asyncio.run(check_alerts([w["query"] for w in get_workspace()]))
|
113 |
-
if alerts:
|
114 |
-
with st.sidebar:
|
115 |
-
st.subheader("🔔 New papers")
|
116 |
-
for q, lnks in alerts.items():
|
117 |
-
st.write(f"**{q}** – {len(lnks)} new")
|
118 |
-
except Exception:
|
119 |
-
pass
|
120 |
-
|
121 |
-
# Run Search
|
122 |
-
if st.button("Run Search 🚀") and query:
|
123 |
-
with st.spinner("Collecting literature & biomedical data …"):
|
124 |
-
res = asyncio.run(orchestrate_search(query, llm=engine))
|
125 |
-
st.session_state.update(
|
126 |
-
query_result=res,
|
127 |
-
last_query=query,
|
128 |
-
last_llm=engine,
|
129 |
-
followup_input="",
|
130 |
-
followup_response=None,
|
131 |
-
)
|
132 |
-
st.success(f"Completed with **{res['llm_used'].title()}**")
|
133 |
-
|
134 |
-
res = st.session_state.query_result
|
135 |
-
if not res:
|
136 |
-
st.info("Enter a question and press **Run Search 🚀**")
|
137 |
-
return
|
138 |
-
|
139 |
-
# Tabs
|
140 |
-
tabs = st.tabs(["Results", "Genes", "Trials", "Variants", "Graph", "Metrics", "Visuals"])
|
141 |
-
|
142 |
-
# --- Results tab ---
|
143 |
with tabs[0]:
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
c1, c2 = st.columns(2)
|
149 |
-
with c1:
|
150 |
-
st.download_button("CSV", pd.DataFrame(res['papers']).to_csv(index=False), "papers.csv", "text/csv")
|
151 |
-
with c2:
|
152 |
-
st.download_button("PDF", _pdf(res['papers']), "papers.pdf", "application/pdf")
|
153 |
-
if st.button("💾 Save"):
|
154 |
-
save_query(st.session_state.last_query, res)
|
155 |
-
st.success("Saved to workspace")
|
156 |
-
|
157 |
-
st.subheader("UMLS concepts")
|
158 |
-
for c in res['umls']:
|
159 |
-
if c.get('cui'):
|
160 |
-
st.write(f"- **{c.get('name','')}** ({c.get('cui')})")
|
161 |
-
|
162 |
-
st.subheader("OpenFDA safety signals")
|
163 |
-
for d in res['drug_safety']:
|
164 |
-
st.json(d)
|
165 |
-
|
166 |
-
st.subheader("AI summary")
|
167 |
-
st.info(res['ai_summary'])
|
168 |
-
|
169 |
-
# --- Genes tab ---
|
170 |
with tabs[1]:
|
171 |
-
|
172 |
-
|
173 |
-
if valid_genes:
|
174 |
-
for g in valid_genes:
|
175 |
-
sym = g.get('symbol') or g.get('name') or ''
|
176 |
-
st.write(f"- **{sym}**")
|
177 |
else:
|
178 |
-
st.
|
179 |
-
|
180 |
-
mesh_list = [d for d in res['mesh_defs'] if isinstance(d, str) and d]
|
181 |
-
if mesh_list:
|
182 |
-
st.markdown("### MeSH definitions")
|
183 |
-
for d in mesh_list:
|
184 |
-
st.write(f"- {d}")
|
185 |
-
|
186 |
-
gene_disease = [d for d in res['gene_disease'] if isinstance(d, dict)]
|
187 |
-
if gene_disease:
|
188 |
-
st.markdown("### DisGeNET links")
|
189 |
-
st.json(gene_disease[:15])
|
190 |
-
|
191 |
-
# --- Trials tab ---
|
192 |
with tabs[2]:
|
193 |
-
|
194 |
-
|
195 |
-
if not trials:
|
196 |
-
st.info(
|
197 |
-
"No trials found. Try a disease name (e.g. ‘Breast Neoplasms’) "
|
198 |
-
"or specific drug (e.g. ‘Pembrolizumab’)."
|
199 |
-
)
|
200 |
else:
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
f"Phase {t.get('phase','?')} | Status {t.get('status','?')}"
|
205 |
-
)
|
206 |
-
|
207 |
-
# --- Variants tab ---
|
208 |
-
with tabs[3]:
|
209 |
-
st.header("Cancer variants (cBioPortal)")
|
210 |
-
variants = res['variants']
|
211 |
-
if not variants:
|
212 |
-
st.info(
|
213 |
-
"No variants found. Try a well-known gene symbol like ‘TP53’ or ‘BRCA1’."
|
214 |
-
)
|
215 |
-
else:
|
216 |
-
st.json(variants[:30])
|
217 |
-
|
218 |
-
# --- Graph tab ---
|
219 |
-
with tabs[4]:
|
220 |
-
nodes, edges, cfg = build_agraph(res['papers'], res['umls'], res['drug_safety'])
|
221 |
-
agraph(nodes, edges, cfg)
|
222 |
-
|
223 |
-
# --- Metrics tab ---
|
224 |
-
with tabs[5]:
|
225 |
-
G = build_nx([n.__dict__ for n in nodes], [e.__dict__ for e in edges])
|
226 |
-
st.metric("Density", f"{get_density(G):.3f}")
|
227 |
-
st.markdown("**Top hubs**")
|
228 |
-
for nid, sc in get_top_hubs(G):
|
229 |
-
lab = next((n.label for n in nodes if n.id == nid), nid)
|
230 |
-
st.write(f"- {lab} {sc:.3f}")
|
231 |
-
|
232 |
-
# --- Visuals tab ---
|
233 |
-
with tabs[6]:
|
234 |
-
years = [p.get('published') for p in res['papers'] if p.get('published')]
|
235 |
-
if years:
|
236 |
-
st.plotly_chart(px.histogram(years, nbins=12, title="Publication Year"))
|
237 |
-
|
238 |
-
# Follow-up QA (outside tabs)
|
239 |
-
st.markdown("---")
|
240 |
-
input_col, button_col = st.columns([4, 1])
|
241 |
-
with input_col:
|
242 |
-
followup = st.text_input("Ask follow-up question:", key="followup_input")
|
243 |
-
with button_col:
|
244 |
-
if st.button("Ask AI"):
|
245 |
-
if followup.strip():
|
246 |
-
with st.spinner("Querying LLM …"):
|
247 |
-
ans = asyncio.run(
|
248 |
-
answer_ai_question(
|
249 |
-
question=followup,
|
250 |
-
context=st.session_state.last_query,
|
251 |
-
llm=st.session_state.last_llm,
|
252 |
-
)
|
253 |
-
)
|
254 |
-
st.session_state.followup_response = ans.get('answer', '')
|
255 |
-
else:
|
256 |
-
st.warning("Please type a question first.")
|
257 |
-
if st.session_state.followup_response:
|
258 |
-
st.write(st.session_state.followup_response)
|
259 |
-
|
260 |
-
|
261 |
-
if __name__ == "__main__":
|
262 |
-
render_ui()
|
|
|
1 |
+
# app.py
|
2 |
+
import asyncio, streamlit as st, pandas as pd
|
3 |
+
from mcp.orchestrator import orchestrate_search
|
4 |
+
|
5 |
+
st.set_page_config(layout="wide", page_title="MedGenesis AI")
|
6 |
+
if "res" not in st.session_state: st.session_state.res = None
|
7 |
+
|
8 |
+
st.title("🧬 MedGenesis AI")
|
9 |
+
llm = st.radio("LLM engine", ["openai","gemini"], horizontal=True)
|
10 |
+
q = st.text_input("Enter biomedical question")
|
11 |
+
if st.button("Run Search") and q:
|
12 |
+
with st.spinner("Fetching data…"):
|
13 |
+
st.session_state.res = asyncio.run(orchestrate_search(q, llm=llm))
|
14 |
+
|
15 |
+
res = st.session_state.res
|
16 |
+
if res:
|
17 |
+
st.subheader("🔬 Papers")
|
18 |
+
for p in res["papers"]:
|
19 |
+
st.markdown(f"**[{p['title']}]({p['link']})** – {p['authors']}")
|
20 |
+
st.write(p["summary"])
|
21 |
+
st.subheader("💡 AI Summary")
|
22 |
+
st.info(res["ai_summary"])
|
23 |
+
|
24 |
+
tabs = st.tabs(["Graph","Variants","Trials"])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
with tabs[0]:
|
26 |
+
from mcp.knowledge_graph import build_agraph
|
27 |
+
nodes, edges, cfg = build_agraph(res)
|
28 |
+
from streamlit_agraph import agraph
|
29 |
+
agraph(nodes, edges, cfg)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
with tabs[1]:
|
31 |
+
if res["variants"]:
|
32 |
+
st.json(res["variants"])
|
|
|
|
|
|
|
|
|
33 |
else:
|
34 |
+
st.warning("No variants found. Try TP53 or BRCA1.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
with tabs[2]:
|
36 |
+
if res["trials"]:
|
37 |
+
st.json(res["trials"])
|
|
|
|
|
|
|
|
|
|
|
38 |
else:
|
39 |
+
st.warning("No trials. Try a disease e.g. ‘Breast Neoplasms’ or a drug.")
|
40 |
+
else:
|
41 |
+
st.info("Enter a query and press Run Search.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|