Update mcp/orchestrator.py
Browse files- mcp/orchestrator.py +75 -122
mcp/orchestrator.py
CHANGED
@@ -1,127 +1,80 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
from
|
8 |
-
import
|
9 |
-
from
|
10 |
-
|
11 |
-
from mcp.
|
12 |
-
from mcp.
|
13 |
-
from mcp.
|
14 |
-
from mcp.
|
15 |
-
from mcp.
|
16 |
-
from mcp.
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
# filter exceptions β keep structure but drop failures
|
40 |
-
return [x for x in out if not isinstance(x, Exception)]
|
41 |
-
return out
|
42 |
-
|
43 |
-
async def _gene_enrichment(keys: List[str]) -> Dict[str, Any]:
|
44 |
-
jobs = []
|
45 |
-
for k in keys:
|
46 |
-
jobs += [
|
47 |
-
search_gene(k), # basic gene info
|
48 |
-
get_mesh_definition(k), # MeSH definitions
|
49 |
-
fetch_gene_info(k), # MyGene
|
50 |
-
fetch_ensembl(k), # Ensembl x-refs
|
51 |
-
fetch_ot(k), # Open Targets associations
|
52 |
-
]
|
53 |
-
res = await _gather_safely(*jobs, as_list=False)
|
54 |
-
|
55 |
-
# slice & compress five-way fan-out
|
56 |
-
combo = lambda idx: [r for i, r in enumerate(res) if i % 5 == idx and r]
|
57 |
-
return {
|
58 |
-
"ncbi" : combo(0),
|
59 |
-
"mesh" : combo(1),
|
60 |
-
"mygene" : combo(2),
|
61 |
-
"ensembl" : combo(3),
|
62 |
-
"ot_assoc" : combo(4),
|
63 |
-
}
|
64 |
-
|
65 |
-
|
66 |
-
# βββββββββββββββββββββββββββββββββ orchestrator ββββββββββββββββββββββββββββββββ
|
67 |
-
async def orchestrate_search(query: str, *, llm: str = _DEF) -> Dict[str, Any]:
|
68 |
-
"""Main entry β returns dict for the Streamlit UI"""
|
69 |
-
# 1 Literature β run in parallel
|
70 |
-
arxiv_task = asyncio.create_task(fetch_arxiv(query))
|
71 |
-
pubmed_task = asyncio.create_task(fetch_pubmed(query))
|
72 |
-
papers_raw = await _gather_safely(arxiv_task, pubmed_task)
|
73 |
-
papers = list(itertools.chain.from_iterable(papers_raw))[:30] # keep β€30
|
74 |
-
|
75 |
-
# 2 Keyword extraction (very light β only from abstracts)
|
76 |
-
kws = {w for p in papers for w in (p["summary"][:500].split()) if w.isalpha()}
|
77 |
-
kws = list(kws)[:10] # coarse, fast -> 10 seeds
|
78 |
-
|
79 |
-
# 3 Bio-enrichment fan-out
|
80 |
-
umls_f = [_safe_task(lookup_umls, k) for k in kws]
|
81 |
-
fda_f = [_safe_task(fetch_drug_safety, k) for k in kws]
|
82 |
-
gene_bundle = asyncio.create_task(_gene_enrichment(kws))
|
83 |
-
trials_task = asyncio.create_task(search_trials(query, max_studies=20))
|
84 |
-
cbio_task = asyncio.create_task(fetch_cbio(kws[0] if kws else ""))
|
85 |
-
|
86 |
-
umls, fda, gene_dat, trials, variants = await asyncio.gather(
|
87 |
-
_gather_safely(*umls_f),
|
88 |
-
_gather_safely(*fda_f),
|
89 |
-
gene_bundle,
|
90 |
-
trials_task,
|
91 |
-
cbio_task,
|
92 |
)
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
97 |
|
98 |
return {
|
99 |
-
"papers"
|
100 |
-
"
|
101 |
-
"
|
102 |
-
"
|
103 |
-
"
|
104 |
-
"
|
105 |
-
"
|
106 |
-
"
|
107 |
-
"
|
108 |
-
"
|
109 |
}
|
110 |
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
""
|
121 |
-
async def _wrapper():
|
122 |
-
try:
|
123 |
-
return await fn(*args)
|
124 |
-
except Exception as exc:
|
125 |
-
log.warning("background task %s failed: %s", fn.__name__, exc)
|
126 |
-
return RuntimeError(str(exc))
|
127 |
-
return asyncio.create_task(_wrapper())
|
|
|
1 |
+
# mcp/orchestrator.py
|
2 |
+
|
3 |
+
import asyncio
|
4 |
+
from mcp.pubmed import fetch_pubmed
|
5 |
+
from mcp.arxiv import fetch_arxiv
|
6 |
+
from mcp.umls import extract_umls_concepts
|
7 |
+
from mcp.openfda import fetch_drug_safety
|
8 |
+
from mcp.ncbi import search_gene, get_mesh_definition
|
9 |
+
from mcp.mygene import fetch_gene_info
|
10 |
+
from mcp.ensembl import fetch_ensembl
|
11 |
+
from mcp.opentargets import fetch_ot
|
12 |
+
from mcp.clinicaltrials import search_trials
|
13 |
+
from mcp.cbio import fetch_cbio
|
14 |
+
from mcp.gemini import gemini_summarize, gemini_qa
|
15 |
+
from mcp.openai_utils import ai_summarize, ai_qa
|
16 |
+
from mcp.disgenet import disease_to_genes
|
17 |
+
|
18 |
+
async def orchestrate_search(query, llm="openai"):
|
19 |
+
# --- Literature: PubMed + arXiv
|
20 |
+
pubmed_task = asyncio.create_task(fetch_pubmed(query, max_results=7))
|
21 |
+
arxiv_task = asyncio.create_task(fetch_arxiv(query, max_results=7))
|
22 |
+
# --- UMLS, OpenFDA, Gene, Mesh
|
23 |
+
umls_task = asyncio.create_task(extract_umls_concepts(query))
|
24 |
+
fda_task = asyncio.create_task(fetch_drug_safety(query))
|
25 |
+
gene_ncbi_task = asyncio.create_task(search_gene(query))
|
26 |
+
mygene_task = asyncio.create_task(fetch_gene_info(query))
|
27 |
+
ensembl_task = asyncio.create_task(fetch_ensembl(query))
|
28 |
+
ot_task = asyncio.create_task(fetch_ot(query))
|
29 |
+
mesh_task = asyncio.create_task(get_mesh_definition(query))
|
30 |
+
# --- Trials, cBio, DisGeNET
|
31 |
+
trials_task = asyncio.create_task(search_trials(query, max_studies=10))
|
32 |
+
cbio_task = asyncio.create_task(fetch_cbio(query))
|
33 |
+
disgenet_task = asyncio.create_task(disease_to_genes(query))
|
34 |
+
|
35 |
+
# Run
|
36 |
+
pubmed, arxiv, umls, fda, ncbi, mygene, ensembl, ot, mesh, trials, cbio, disgenet = await asyncio.gather(
|
37 |
+
pubmed_task, arxiv_task, umls_task, fda_task, gene_ncbi_task,
|
38 |
+
mygene_task, ensembl_task, ot_task, mesh_task, trials_task, cbio_task, disgenet_task
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
)
|
40 |
+
# Genes: flatten and deduplicate
|
41 |
+
genes = []
|
42 |
+
for g in (ncbi, mygene, ensembl, ot):
|
43 |
+
if isinstance(g, list):
|
44 |
+
genes.extend(g)
|
45 |
+
elif isinstance(g, dict) and g:
|
46 |
+
genes.append(g)
|
47 |
+
genes = [g for i, g in enumerate(genes) if g and genes.index(g) == i] # dedup
|
48 |
+
|
49 |
+
# --- AI summary (LLM engine select)
|
50 |
+
papers = (pubmed or []) + (arxiv or [])
|
51 |
+
if llm == "gemini":
|
52 |
+
ai_summary = await gemini_summarize(" ".join([p.get("summary", "") for p in papers]))
|
53 |
+
llm_used = "gemini"
|
54 |
+
else:
|
55 |
+
ai_summary = await ai_summarize(" ".join([p.get("summary", "") for p in papers]))
|
56 |
+
llm_used = "openai"
|
57 |
|
58 |
return {
|
59 |
+
"papers": papers,
|
60 |
+
"genes": genes,
|
61 |
+
"umls": umls or [],
|
62 |
+
"gene_disease": disgenet if isinstance(disgenet, list) else [],
|
63 |
+
"mesh_defs": [mesh] if isinstance(mesh, str) and mesh else [],
|
64 |
+
"drug_safety": fda or [],
|
65 |
+
"clinical_trials": trials or [],
|
66 |
+
"variants": cbio if isinstance(cbio, list) else [],
|
67 |
+
"ai_summary": ai_summary,
|
68 |
+
"llm_used": llm_used
|
69 |
}
|
70 |
|
71 |
+
async def answer_ai_question(question, context="", llm="openai"):
|
72 |
+
# Gemini fallback if OpenAI quota is exceeded
|
73 |
+
try:
|
74 |
+
if llm == "gemini":
|
75 |
+
answer = await gemini_qa(question, context)
|
76 |
+
else:
|
77 |
+
answer = await ai_qa(question, context)
|
78 |
+
except Exception as e:
|
79 |
+
answer = f"LLM unavailable or quota exceeded. ({e})"
|
80 |
+
return {"answer": answer}
|
|
|
|
|
|
|
|
|
|
|
|
|
|