Update app.py
Browse files
app.py
CHANGED
@@ -1,64 +1,69 @@
|
|
1 |
#!/usr/bin/env python3
|
2 |
-
|
3 |
-
MedGenesis AI β Streamlit UI
|
4 |
-
|
5 |
-
β’ Dual-LLM selector (OpenAI | Gemini)
|
6 |
-
β’ Tabs:
|
7 |
-
Results | Genes | Trials | Variants | Graph | Metrics | Visuals
|
8 |
-
β’ Robust PDF export (all Unicode β Latin-1 safe)
|
9 |
-
β’ Null-safe handling of RuntimeError / HTTPStatusError placeholders
|
10 |
-
β’ Metrics tab now converts Edge objects β {'source', 'target'} safely,
|
11 |
-
preventing the KeyError you just saw.
|
12 |
-
"""
|
13 |
-
|
14 |
-
from __future__ import annotations
|
15 |
import os, pathlib, asyncio, re
|
16 |
from pathlib import Path
|
|
|
17 |
|
18 |
import streamlit as st
|
19 |
import pandas as pd
|
20 |
import plotly.express as px
|
21 |
-
from streamlit_agraph import agraph, Node, Edge
|
22 |
from fpdf import FPDF
|
|
|
23 |
|
|
|
24 |
from mcp.orchestrator import orchestrate_search, answer_ai_question
|
25 |
from mcp.workspace import get_workspace, save_query
|
26 |
from mcp.knowledge_graph import build_agraph
|
27 |
from mcp.graph_metrics import build_nx, get_top_hubs, get_density
|
|
|
28 |
|
29 |
-
# ββ Streamlit telemetry dir fix
|
30 |
-
os.environ["STREAMLIT_DATA_DIR"]
|
31 |
-
os.environ["XDG_STATE_HOME"]
|
32 |
-
os.environ["STREAMLIT_BROWSER_GATHERUSAGESTATS"]
|
33 |
pathlib.Path("/tmp/.streamlit").mkdir(parents=True, exist_ok=True)
|
34 |
|
35 |
ROOT = Path(__file__).parent
|
36 |
LOGO = ROOT / "assets" / "logo.png"
|
37 |
|
38 |
-
#
|
39 |
-
|
|
|
|
|
|
|
40 |
return txt.encode("latin-1", "replace").decode("latin-1")
|
41 |
|
|
|
42 |
def _pdf(papers: list[dict]) -> bytes:
|
43 |
pdf = FPDF()
|
44 |
pdf.set_auto_page_break(auto=True, margin=15)
|
45 |
pdf.add_page()
|
46 |
pdf.set_font("Helvetica", size=11)
|
47 |
-
pdf.cell(200, 8,
|
|
|
48 |
pdf.ln(3)
|
|
|
49 |
for i, p in enumerate(papers, 1):
|
50 |
pdf.set_font("Helvetica", "B", 11)
|
51 |
-
pdf.multi_cell(0, 7,
|
52 |
pdf.set_font("Helvetica", "", 9)
|
53 |
-
body =
|
54 |
-
|
|
|
|
|
|
|
|
|
55 |
pdf.ln(1)
|
|
|
|
|
56 |
return pdf.output(dest="S").encode("latin-1", "replace")
|
57 |
|
58 |
-
|
59 |
-
def _workspace_sidebar():
|
60 |
with st.sidebar:
|
61 |
-
st.header("
|
62 |
ws = get_workspace()
|
63 |
if not ws:
|
64 |
st.info("Run a search then press **Save** to populate this list.")
|
@@ -67,40 +72,56 @@ def _workspace_sidebar():
|
|
67 |
with st.expander(f"{i}. {item['query']}"):
|
68 |
st.write(item["result"]["ai_summary"])
|
69 |
|
70 |
-
|
|
|
|
|
|
|
71 |
def render_ui() -> None:
|
72 |
st.set_page_config("MedGenesis AI", layout="wide")
|
73 |
|
74 |
-
# Session defaults
|
75 |
-
|
76 |
"query_result": None,
|
77 |
-
"last_query": "",
|
78 |
-
"last_llm": "openai",
|
79 |
"followup_input": "",
|
80 |
"followup_response": None,
|
81 |
-
|
82 |
-
|
|
|
83 |
st.session_state.setdefault(k, v)
|
84 |
|
85 |
_workspace_sidebar()
|
86 |
|
87 |
-
|
88 |
-
|
89 |
-
with c1:
|
90 |
if LOGO.exists():
|
91 |
-
st.image(
|
92 |
-
with
|
93 |
st.markdown("## 𧬠**MedGenesis AI**")
|
94 |
st.caption("Multi-source biomedical assistant Β· OpenAI / Gemini")
|
95 |
|
96 |
-
# Controls
|
97 |
llm = st.radio("LLM engine", ["openai", "gemini"], horizontal=True)
|
98 |
query = st.text_input("Enter biomedical question",
|
99 |
placeholder="e.g. CRISPR glioblastoma therapy")
|
100 |
|
101 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
102 |
with st.spinner("Collecting literature & biomedical data β¦"):
|
103 |
res = asyncio.run(orchestrate_search(query, llm=llm))
|
|
|
|
|
104 |
st.session_state.update(
|
105 |
query_result=res,
|
106 |
last_query=query,
|
@@ -108,99 +129,94 @@ def render_ui() -> None:
|
|
108 |
followup_input="",
|
109 |
followup_response=None,
|
110 |
)
|
|
|
111 |
|
112 |
-
res
|
113 |
if not res:
|
114 |
-
st.info("Enter a question and press **Run Search π**")
|
115 |
return
|
116 |
|
117 |
-
#
|
118 |
-
|
119 |
-
|
120 |
-
"gene_disease", "clinical_trials", "variants"
|
121 |
-
):
|
122 |
-
res.setdefault(k, [])
|
123 |
|
124 |
-
#
|
125 |
-
tabs = st.tabs([
|
126 |
-
"Results", "Genes", "Trials", "Variants",
|
127 |
-
"Graph", "Metrics", "Visuals"
|
128 |
-
])
|
129 |
-
|
130 |
-
# Results tab -----------------------------------------------------
|
131 |
with tabs[0]:
|
132 |
-
st.subheader("Literature")
|
133 |
for i, p in enumerate(res["papers"], 1):
|
134 |
-
st.markdown(
|
|
|
|
|
|
|
135 |
st.write(p["summary"])
|
136 |
-
|
137 |
-
|
|
|
138 |
st.download_button(
|
139 |
"CSV",
|
140 |
pd.DataFrame(res["papers"]).to_csv(index=False),
|
141 |
"papers.csv",
|
142 |
"text/csv",
|
143 |
)
|
144 |
-
with
|
145 |
st.download_button("PDF", _pdf(res["papers"]),
|
146 |
"papers.pdf", "application/pdf")
|
|
|
147 |
if st.button("πΎ Save"):
|
148 |
save_query(st.session_state.last_query, res)
|
149 |
st.success("Saved to workspace")
|
150 |
|
151 |
st.subheader("UMLS concepts")
|
152 |
-
for c in res["umls"]:
|
153 |
if isinstance(c, dict) and c.get("cui"):
|
154 |
st.write(f"- **{c['name']}** ({c['cui']})")
|
155 |
|
156 |
st.subheader("OpenFDA safety signals")
|
157 |
-
for d in res["drug_safety"]:
|
158 |
st.json(d)
|
159 |
|
160 |
st.subheader("AI summary")
|
161 |
st.info(res["ai_summary"])
|
162 |
|
163 |
-
# Genes
|
164 |
with tabs[1]:
|
165 |
st.header("Gene / Variant signals")
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
|
|
174 |
if res["gene_disease"]:
|
175 |
st.markdown("### DisGeNET associations")
|
176 |
-
|
|
|
|
|
177 |
|
178 |
-
|
|
|
179 |
st.markdown("### MeSH definitions")
|
180 |
-
for d in
|
181 |
-
|
182 |
-
st.write("-", d)
|
183 |
|
184 |
-
# Trials
|
185 |
with tabs[2]:
|
186 |
st.header("Clinical trials")
|
187 |
-
|
|
|
188 |
st.info("No trials (rate-limited or none found).")
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
|
|
|
|
|
|
195 |
with tabs[3]:
|
196 |
-
st.header("Cancer variants (cBioPortal)")
|
197 |
-
if not res["variants"]:
|
198 |
-
st.info("No variant data.")
|
199 |
-
else:
|
200 |
-
st.json(res["variants"][:50])
|
201 |
-
|
202 |
-
# Graph tab -------------------------------------------------------
|
203 |
-
with tabs[4]:
|
204 |
nodes, edges, cfg = build_agraph(
|
205 |
res["papers"], res["umls"], res["drug_safety"]
|
206 |
)
|
@@ -211,36 +227,37 @@ def render_ui() -> None:
|
|
211 |
n.color = "#f1c40f" if pat.search(n.label) else "#d3d3d3"
|
212 |
agraph(nodes, edges, cfg)
|
213 |
|
214 |
-
# Metrics
|
215 |
-
with tabs[
|
216 |
-
# Convert Edge objects β dicts with guaranteed 'source'/'target'
|
217 |
-
edge_dicts = [
|
218 |
-
{"source": getattr(e, "source", getattr(e, "from", "")),
|
219 |
-
"target": getattr(e, "target", getattr(e, "to", ""))}
|
220 |
-
for e in edges if isinstance(e, Edge)
|
221 |
-
if getattr(e, "source", getattr(e, "from", None))
|
222 |
-
and getattr(e, "target", getattr(e, "to", None))
|
223 |
-
]
|
224 |
G = build_nx(
|
225 |
[n.__dict__ for n in nodes],
|
226 |
-
|
227 |
)
|
228 |
st.metric("Density", f"{get_density(G):.3f}")
|
229 |
st.markdown("**Top hubs**")
|
230 |
-
for nid, sc in get_top_hubs(G):
|
231 |
-
|
232 |
-
st.write(f"- {
|
233 |
|
234 |
-
# Visuals
|
235 |
-
with tabs[
|
236 |
-
years = [
|
|
|
|
|
|
|
237 |
if years:
|
238 |
-
st.plotly_chart(
|
239 |
-
|
|
|
|
|
|
|
|
|
240 |
|
241 |
-
# Follow-up
|
242 |
st.markdown("---")
|
243 |
-
st.text_input("Ask follow-up question:",
|
|
|
|
|
244 |
|
245 |
def _on_ask():
|
246 |
q = st.session_state.followup_input.strip()
|
@@ -252,10 +269,11 @@ def render_ui() -> None:
|
|
252 |
answer_ai_question(
|
253 |
q,
|
254 |
context=st.session_state.last_query,
|
255 |
-
llm=st.session_state.last_llm
|
256 |
-
|
|
|
|
|
257 |
)
|
258 |
-
st.session_state.followup_response = ans["answer"]
|
259 |
|
260 |
st.button("Ask AI", on_click=_on_ask)
|
261 |
|
@@ -263,5 +281,6 @@ def render_ui() -> None:
|
|
263 |
st.write(st.session_state.followup_response)
|
264 |
|
265 |
|
|
|
266 |
if __name__ == "__main__":
|
267 |
render_ui()
|
|
|
1 |
#!/usr/bin/env python3
|
2 |
+
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
3 |
+
# MedGenesis AI β Streamlit UI (OpenAI + Gemini, CPU-only)
|
4 |
+
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
import os, pathlib, asyncio, re
|
6 |
from pathlib import Path
|
7 |
+
from datetime import datetime
|
8 |
|
9 |
import streamlit as st
|
10 |
import pandas as pd
|
11 |
import plotly.express as px
|
|
|
12 |
from fpdf import FPDF
|
13 |
+
from streamlit_agraph import agraph
|
14 |
|
15 |
+
# ββ internal helpers --------------------------------------------------
|
16 |
from mcp.orchestrator import orchestrate_search, answer_ai_question
|
17 |
from mcp.workspace import get_workspace, save_query
|
18 |
from mcp.knowledge_graph import build_agraph
|
19 |
from mcp.graph_metrics import build_nx, get_top_hubs, get_density
|
20 |
+
from mcp.alerts import check_alerts
|
21 |
|
22 |
+
# ββ Streamlit telemetry dir fix (HF Spaces sandbox quirks) ------------
|
23 |
+
os.environ["STREAMLIT_DATA_DIR"] = "/tmp/.streamlit"
|
24 |
+
os.environ["XDG_STATE_HOME"] = "/tmp"
|
25 |
+
os.environ["STREAMLIT_BROWSER_GATHERUSAGESTATS"] = "false"
|
26 |
pathlib.Path("/tmp/.streamlit").mkdir(parents=True, exist_ok=True)
|
27 |
|
28 |
ROOT = Path(__file__).parent
|
29 |
LOGO = ROOT / "assets" / "logo.png"
|
30 |
|
31 |
+
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
32 |
+
# Small util helpers
|
33 |
+
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
34 |
+
def _latin1_safe(txt: str) -> str:
|
35 |
+
"""Replace non-Latin-1 chars β keeps FPDF happy."""
|
36 |
return txt.encode("latin-1", "replace").decode("latin-1")
|
37 |
|
38 |
+
|
39 |
def _pdf(papers: list[dict]) -> bytes:
|
40 |
pdf = FPDF()
|
41 |
pdf.set_auto_page_break(auto=True, margin=15)
|
42 |
pdf.add_page()
|
43 |
pdf.set_font("Helvetica", size=11)
|
44 |
+
pdf.cell(200, 8, _latin1_safe("MedGenesis AI β Literature results"),
|
45 |
+
ln=True, align="C")
|
46 |
pdf.ln(3)
|
47 |
+
|
48 |
for i, p in enumerate(papers, 1):
|
49 |
pdf.set_font("Helvetica", "B", 11)
|
50 |
+
pdf.multi_cell(0, 7, _latin1_safe(f"{i}. {p['title']}"))
|
51 |
pdf.set_font("Helvetica", "", 9)
|
52 |
+
body = (
|
53 |
+
f"{p['authors']}\n"
|
54 |
+
f"{p['summary']}\n"
|
55 |
+
f"{p['link']}\n"
|
56 |
+
)
|
57 |
+
pdf.multi_cell(0, 6, _latin1_safe(body))
|
58 |
pdf.ln(1)
|
59 |
+
|
60 |
+
# FPDF already returns latin-1 bytes β no extra encode needed
|
61 |
return pdf.output(dest="S").encode("latin-1", "replace")
|
62 |
|
63 |
+
|
64 |
+
def _workspace_sidebar() -> None:
|
65 |
with st.sidebar:
|
66 |
+
st.header("π Workspace")
|
67 |
ws = get_workspace()
|
68 |
if not ws:
|
69 |
st.info("Run a search then press **Save** to populate this list.")
|
|
|
72 |
with st.expander(f"{i}. {item['query']}"):
|
73 |
st.write(item["result"]["ai_summary"])
|
74 |
|
75 |
+
|
76 |
+
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
77 |
+
# Main Streamlit UI
|
78 |
+
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
79 |
def render_ui() -> None:
|
80 |
st.set_page_config("MedGenesis AI", layout="wide")
|
81 |
|
82 |
+
# ββ Session-state defaults ββββββββββββββββββββββββββββββββββββββββ
|
83 |
+
for k, v in {
|
84 |
"query_result": None,
|
|
|
|
|
85 |
"followup_input": "",
|
86 |
"followup_response": None,
|
87 |
+
"last_query": "",
|
88 |
+
"last_llm": "",
|
89 |
+
}.items():
|
90 |
st.session_state.setdefault(k, v)
|
91 |
|
92 |
_workspace_sidebar()
|
93 |
|
94 |
+
col_logo, col_title = st.columns([0.15, 0.85])
|
95 |
+
with col_logo:
|
|
|
96 |
if LOGO.exists():
|
97 |
+
st.image(LOGO, width=110)
|
98 |
+
with col_title:
|
99 |
st.markdown("## 𧬠**MedGenesis AI**")
|
100 |
st.caption("Multi-source biomedical assistant Β· OpenAI / Gemini")
|
101 |
|
|
|
102 |
llm = st.radio("LLM engine", ["openai", "gemini"], horizontal=True)
|
103 |
query = st.text_input("Enter biomedical question",
|
104 |
placeholder="e.g. CRISPR glioblastoma therapy")
|
105 |
|
106 |
+
# ββ alert notifications (async) βββββββββββββββββββββββββββββββββββ
|
107 |
+
saved_qs = [w["query"] for w in get_workspace()]
|
108 |
+
if saved_qs:
|
109 |
+
try:
|
110 |
+
news = asyncio.run(check_alerts(saved_qs))
|
111 |
+
if news:
|
112 |
+
with st.sidebar:
|
113 |
+
st.subheader("π New papers")
|
114 |
+
for q, lnks in news.items():
|
115 |
+
st.write(f"**{q}** β {len(lnks)} new")
|
116 |
+
except Exception:
|
117 |
+
pass # network hiccups β silent
|
118 |
+
|
119 |
+
# ββ Run Search ----------------------------------------------------
|
120 |
+
if st.button("Run Search π") and query.strip():
|
121 |
with st.spinner("Collecting literature & biomedical data β¦"):
|
122 |
res = asyncio.run(orchestrate_search(query, llm=llm))
|
123 |
+
|
124 |
+
# store in session
|
125 |
st.session_state.update(
|
126 |
query_result=res,
|
127 |
last_query=query,
|
|
|
129 |
followup_input="",
|
130 |
followup_response=None,
|
131 |
)
|
132 |
+
st.success(f"Completed with **{res['llm_used'].title()}**")
|
133 |
|
134 |
+
res = st.session_state.query_result
|
135 |
if not res:
|
136 |
+
st.info("Enter a biomedical question and press **Run Search π**")
|
137 |
return
|
138 |
|
139 |
+
# ββ Tabs ----------------------------------------------------------
|
140 |
+
tabs = st.tabs(["Results", "Genes", "Trials",
|
141 |
+
"Graph", "Metrics", "Visuals"])
|
|
|
|
|
|
|
142 |
|
143 |
+
# 1) Results -------------------------------------------------------
|
|
|
|
|
|
|
|
|
|
|
|
|
144 |
with tabs[0]:
|
|
|
145 |
for i, p in enumerate(res["papers"], 1):
|
146 |
+
st.markdown(
|
147 |
+
f"**{i}. [{p['title']}]({p['link']})** "
|
148 |
+
f"*{p['authors']}*"
|
149 |
+
)
|
150 |
st.write(p["summary"])
|
151 |
+
|
152 |
+
c_csv, c_pdf = st.columns(2)
|
153 |
+
with c_csv:
|
154 |
st.download_button(
|
155 |
"CSV",
|
156 |
pd.DataFrame(res["papers"]).to_csv(index=False),
|
157 |
"papers.csv",
|
158 |
"text/csv",
|
159 |
)
|
160 |
+
with c_pdf:
|
161 |
st.download_button("PDF", _pdf(res["papers"]),
|
162 |
"papers.pdf", "application/pdf")
|
163 |
+
|
164 |
if st.button("πΎ Save"):
|
165 |
save_query(st.session_state.last_query, res)
|
166 |
st.success("Saved to workspace")
|
167 |
|
168 |
st.subheader("UMLS concepts")
|
169 |
+
for c in (res["umls"] or []):
|
170 |
if isinstance(c, dict) and c.get("cui"):
|
171 |
st.write(f"- **{c['name']}** ({c['cui']})")
|
172 |
|
173 |
st.subheader("OpenFDA safety signals")
|
174 |
+
for d in (res["drug_safety"] or []):
|
175 |
st.json(d)
|
176 |
|
177 |
st.subheader("AI summary")
|
178 |
st.info(res["ai_summary"])
|
179 |
|
180 |
+
# 2) Genes ---------------------------------------------------------
|
181 |
with tabs[1]:
|
182 |
st.header("Gene / Variant signals")
|
183 |
+
genes_list = [
|
184 |
+
g for g in res["genes"]
|
185 |
+
if isinstance(g, dict) and (g.get("symbol") or g.get("name"))
|
186 |
+
]
|
187 |
+
if not genes_list:
|
188 |
+
st.info("No gene hits (rate-limited or none found).")
|
189 |
+
for g in genes_list:
|
190 |
+
st.write(f"- **{g.get('symbol') or g.get('name')}** "
|
191 |
+
f"{g.get('description','')}")
|
192 |
if res["gene_disease"]:
|
193 |
st.markdown("### DisGeNET associations")
|
194 |
+
ok = [d for d in res["gene_disease"] if isinstance(d, dict)]
|
195 |
+
if ok:
|
196 |
+
st.json(ok[:15])
|
197 |
|
198 |
+
defs = [d for d in res["mesh_defs"] if isinstance(d, str) and d]
|
199 |
+
if defs:
|
200 |
st.markdown("### MeSH definitions")
|
201 |
+
for d in defs:
|
202 |
+
st.write("-", d)
|
|
|
203 |
|
204 |
+
# 3) Trials --------------------------------------------------------
|
205 |
with tabs[2]:
|
206 |
st.header("Clinical trials")
|
207 |
+
ct = res["clinical_trials"]
|
208 |
+
if not ct:
|
209 |
st.info("No trials (rate-limited or none found).")
|
210 |
+
for t in ct:
|
211 |
+
nct = t.get("NCTId", [""])[0]
|
212 |
+
bttl = t.get("BriefTitle", [""])[0]
|
213 |
+
phase= t.get("Phase", [""])[0]
|
214 |
+
stat = t.get("OverallStatus", [""])[0]
|
215 |
+
st.markdown(f"**{nct}** β {bttl}")
|
216 |
+
st.write(f"Phase {phase} | Status {stat}")
|
217 |
+
|
218 |
+
# 4) Graph ---------------------------------------------------------
|
219 |
with tabs[3]:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
220 |
nodes, edges, cfg = build_agraph(
|
221 |
res["papers"], res["umls"], res["drug_safety"]
|
222 |
)
|
|
|
227 |
n.color = "#f1c40f" if pat.search(n.label) else "#d3d3d3"
|
228 |
agraph(nodes, edges, cfg)
|
229 |
|
230 |
+
# 5) Metrics -------------------------------------------------------
|
231 |
+
with tabs[4]:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
232 |
G = build_nx(
|
233 |
[n.__dict__ for n in nodes],
|
234 |
+
[e.__dict__ for e in edges],
|
235 |
)
|
236 |
st.metric("Density", f"{get_density(G):.3f}")
|
237 |
st.markdown("**Top hubs**")
|
238 |
+
for nid, sc in get_top_hubs(G, k=5):
|
239 |
+
label = next((n.label for n in nodes if n.id == nid), nid)
|
240 |
+
st.write(f"- {label} {sc:.3f}")
|
241 |
|
242 |
+
# 6) Visuals -------------------------------------------------------
|
243 |
+
with tabs[5]:
|
244 |
+
years = [
|
245 |
+
p["published"][:4] for p in res["papers"]
|
246 |
+
if p.get("published") and len(p["published"]) >= 4
|
247 |
+
]
|
248 |
if years:
|
249 |
+
st.plotly_chart(
|
250 |
+
px.histogram(
|
251 |
+
years, nbins=min(15, len(set(years))),
|
252 |
+
title="Publication Year"
|
253 |
+
)
|
254 |
+
)
|
255 |
|
256 |
+
# ββ Follow-up Q-A -------------------------------------------------
|
257 |
st.markdown("---")
|
258 |
+
st.text_input("Ask follow-up question:",
|
259 |
+
key="followup_input",
|
260 |
+
placeholder="e.g. Any Phase III trials recruiting now?")
|
261 |
|
262 |
def _on_ask():
|
263 |
q = st.session_state.followup_input.strip()
|
|
|
269 |
answer_ai_question(
|
270 |
q,
|
271 |
context=st.session_state.last_query,
|
272 |
+
llm=st.session_state.last_llm)
|
273 |
+
)
|
274 |
+
st.session_state.followup_response = (
|
275 |
+
ans.get("answer") or "LLM unavailable or quota exceeded."
|
276 |
)
|
|
|
277 |
|
278 |
st.button("Ask AI", on_click=_on_ask)
|
279 |
|
|
|
281 |
st.write(st.session_state.followup_response)
|
282 |
|
283 |
|
284 |
+
# ββ entry-point βββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
285 |
if __name__ == "__main__":
|
286 |
render_ui()
|