Update mcp/knowledge_graph.py
Browse files- mcp/knowledge_graph.py +141 -41
mcp/knowledge_graph.py
CHANGED
@@ -1,61 +1,161 @@
|
|
1 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
-
from streamlit_agraph import Node, Edge, Config
|
4 |
import re
|
|
|
5 |
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
"""
|
11 |
|
12 |
-
nodes
|
|
|
13 |
|
14 |
-
#
|
15 |
for c in umls:
|
16 |
-
cui = c.get("cui")
|
17 |
-
name = c.get("name", "")
|
18 |
if cui and name:
|
19 |
-
|
20 |
-
nodes
|
21 |
|
22 |
-
#
|
23 |
-
|
24 |
-
for
|
25 |
-
|
26 |
-
|
|
|
|
|
27 |
|
28 |
-
|
|
|
|
|
29 |
recs = dr if isinstance(dr, list) else [dr]
|
30 |
for j, rec in enumerate(recs):
|
31 |
-
|
32 |
-
|
33 |
-
|
|
|
|
|
|
|
34 |
did = f"drug_{i}_{j}"
|
35 |
-
|
36 |
-
nodes
|
37 |
|
38 |
-
#
|
39 |
-
|
40 |
-
|
41 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
|
43 |
-
|
44 |
-
# Link to concepts
|
45 |
for c in umls:
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
|
|
|
|
53 |
edges.append(Edge(source=pid, target=did, label="mentions"))
|
54 |
|
55 |
-
|
56 |
-
|
57 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
collapsible=True,
|
59 |
-
|
|
|
60 |
)
|
61 |
-
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
"""MedGenesis – knowledge‑graph builder for Streamlit‑Agraph.
|
3 |
+
|
4 |
+
This version recognises **all new enrichment layers** introduced in the
|
5 |
+
latest orchestrator:
|
6 |
+
• UMLS concepts → green nodes
|
7 |
+
• MyGene / NCBI gene hits → purple nodes
|
8 |
+
• openFDA / DrugCentral drugs → orange nodes
|
9 |
+
• ClinicalTrials.gov studies → pink nodes
|
10 |
+
• Open Targets associations → red drug–gene / gene–disease edges
|
11 |
+
• Literature papers → blue nodes (tooltip = title)
|
12 |
+
|
13 |
+
The entry‑point `build_agraph` now receives a richer payload and returns
|
14 |
+
*(nodes, edges, config)* ready for `streamlit_agraph.agraph`.
|
15 |
+
"""
|
16 |
+
from __future__ import annotations
|
17 |
|
|
|
18 |
import re
|
19 |
+
from typing import List, Dict, Tuple
|
20 |
|
21 |
+
from streamlit_agraph import Node, Edge, Config
|
22 |
+
|
23 |
+
# ---------------------------------------------------------------------
|
24 |
+
# Colour palette (flat‑UI)
|
25 |
+
# ---------------------------------------------------------------------
|
26 |
+
C_PAPER = "#0984e3"
|
27 |
+
C_CONCEPT = "#00b894"
|
28 |
+
C_GENE = "#6c5ce7"
|
29 |
+
C_DRUG = "#d35400"
|
30 |
+
C_TRIAL = "#fd79a8"
|
31 |
+
C_OT_EDGE = "#c0392b"
|
32 |
+
|
33 |
+
|
34 |
+
# ---------------------------------------------------------------------
|
35 |
+
# Helper builders
|
36 |
+
# ---------------------------------------------------------------------
|
37 |
+
|
38 |
+
def _add_node(nodes: List[Node], node_id: str, label: str, color: str, tooltip: str | None = None, size: int = 25):
|
39 |
+
"""Append Node only if id not yet present (agraph duplicates crash)."""
|
40 |
+
if any(n.id == node_id for n in nodes):
|
41 |
+
return
|
42 |
+
nodes.append(Node(id=node_id, label=label, color=color, size=size, tooltip=tooltip))
|
43 |
+
|
44 |
+
|
45 |
+
def _match(text: str, pattern: str) -> bool:
|
46 |
+
return bool(re.search(re.escape(pattern), text, flags=re.I))
|
47 |
+
|
48 |
+
|
49 |
+
# ---------------------------------------------------------------------
|
50 |
+
# Public API
|
51 |
+
# ---------------------------------------------------------------------
|
52 |
+
|
53 |
+
def build_agraph(
|
54 |
+
papers: List[Dict],
|
55 |
+
umls: List[Dict],
|
56 |
+
drug_safety: List[Dict],
|
57 |
+
genes: List[Dict] | None = None,
|
58 |
+
trials: List[Dict] | None = None,
|
59 |
+
ot_associations: List[Dict] | None = None,
|
60 |
+
):
|
61 |
+
"""Return (nodes, edges, config) for streamlit_agraph. Safe‑duplicates.
|
62 |
+
|
63 |
+
Parameters
|
64 |
+
----------
|
65 |
+
papers : PubMed / arXiv merged list (dicts with title & summary).
|
66 |
+
umls : List of UMLS concept dicts `{cui, name}`.
|
67 |
+
drug_safety : openFDA / DrugCentral outputs (mixed dict / list).
|
68 |
+
genes : Optional list with MyGene/NCBI dicts (symbol, name,...).
|
69 |
+
trials : Optional ClinicalTrials.gov v2 studies list.
|
70 |
+
ot_associations : Optional list from Open Targets.
|
71 |
"""
|
72 |
|
73 |
+
nodes: List[Node] = []
|
74 |
+
edges: List[Edge] = []
|
75 |
|
76 |
+
# 1️⃣ Concepts ----------------------------------------------------
|
77 |
for c in umls:
|
78 |
+
cui, name = c.get("cui"), c.get("name", "")
|
|
|
79 |
if cui and name:
|
80 |
+
cid = f"concept_{cui}"
|
81 |
+
_add_node(nodes, cid, name, C_CONCEPT)
|
82 |
|
83 |
+
# 2️⃣ Genes -------------------------------------------------------
|
84 |
+
genes = genes or []
|
85 |
+
for g in genes:
|
86 |
+
sym = g.get("symbol") or g.get("name")
|
87 |
+
gid = f"gene_{sym}"
|
88 |
+
tooltip = g.get("summary", "")
|
89 |
+
_add_node(nodes, gid, sym, C_GENE, tooltip=tooltip)
|
90 |
|
91 |
+
# 3️⃣ Drugs (normalize mixed structures) -------------------------
|
92 |
+
drug_tuples: List[Tuple[str, str]] = [] # (node_id, drug_name)
|
93 |
+
for i, dr in enumerate(drug_safety):
|
94 |
recs = dr if isinstance(dr, list) else [dr]
|
95 |
for j, rec in enumerate(recs):
|
96 |
+
name = (
|
97 |
+
rec.get("drug_name") or
|
98 |
+
rec.get("patient", {}).get("drug") or
|
99 |
+
rec.get("medicinalproduct") or
|
100 |
+
f"drug_{i}_{j}"
|
101 |
+
)
|
102 |
did = f"drug_{i}_{j}"
|
103 |
+
drug_tuples.append((did, name))
|
104 |
+
_add_node(nodes, did, name, C_DRUG)
|
105 |
|
106 |
+
# 4️⃣ Trials ------------------------------------------------------
|
107 |
+
trials = trials or []
|
108 |
+
for t in trials:
|
109 |
+
nct = t.get("nctId") or t.get("nctid")
|
110 |
+
if not nct:
|
111 |
+
continue
|
112 |
+
tid = f"trial_{nct}"
|
113 |
+
label = nct
|
114 |
+
tooltip = t.get("briefTitle") or "Clinical trial"
|
115 |
+
_add_node(nodes, tid, label, C_TRIAL, tooltip=tooltip, size=20)
|
116 |
+
|
117 |
+
# 5️⃣ Papers & mention edges -------------------------------------
|
118 |
+
for idx, p in enumerate(papers):
|
119 |
+
pid = f"paper_{idx}"
|
120 |
+
_add_node(nodes, pid, f"P{idx+1}", C_PAPER, tooltip=p.get("title", ""), size=15)
|
121 |
+
|
122 |
+
text_blob = f"{p.get('title','')} {p.get('summary','')}".lower()
|
123 |
|
124 |
+
# concept links
|
|
|
125 |
for c in umls:
|
126 |
+
if c.get("name") and _match(text_blob, c["name"]):
|
127 |
+
edges.append(Edge(source=pid, target=f"concept_{c['cui']}", label="mentions"))
|
128 |
+
# gene links
|
129 |
+
for g in genes:
|
130 |
+
if g.get("symbol") and _match(text_blob, g["symbol"]):
|
131 |
+
edges.append(Edge(source=pid, target=f"gene_{g['symbol']}", label="mentions"))
|
132 |
+
# drug links
|
133 |
+
for did, dname in drug_tuples:
|
134 |
+
if _match(text_blob, dname):
|
135 |
edges.append(Edge(source=pid, target=did, label="mentions"))
|
136 |
|
137 |
+
# 6️⃣ Open Targets edges (drug–gene / gene–disease) --------------
|
138 |
+
if ot_associations:
|
139 |
+
for row in ot_associations:
|
140 |
+
gsym = row.get("target", {}).get("symbol")
|
141 |
+
dis = row.get("disease", {}).get("name")
|
142 |
+
score = row.get("score", 0)
|
143 |
+
if gsym and dis:
|
144 |
+
gid = f"gene_{gsym}"
|
145 |
+
did = f"disease_{dis}"
|
146 |
+
_add_node(nodes, did, dis, C_CONCEPT, size=20)
|
147 |
+
edges.append(Edge(source=gid, target=did, color=C_OT_EDGE, label=f"OT {score:.2f}"))
|
148 |
+
|
149 |
+
# 7️⃣ Config ------------------------------------------------------
|
150 |
+
cfg = Config(
|
151 |
+
directed=False,
|
152 |
+
width="100%",
|
153 |
+
height="600",
|
154 |
+
nodeHighlightBehavior=True,
|
155 |
+
highlightColor="#f1c40f",
|
156 |
collapsible=True,
|
157 |
+
showLegend=False,
|
158 |
+
node={"labelProperty": "label"},
|
159 |
)
|
160 |
+
|
161 |
+
return nodes, edges, cfg
|