Update mcp/graph_metrics.py
Browse files- mcp/graph_metrics.py +38 -9
mcp/graph_metrics.py
CHANGED
|
@@ -1,31 +1,60 @@
|
|
| 1 |
-
# mcp/graph_metrics.py
|
| 2 |
"""
|
| 3 |
-
Basic
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
"""
|
| 8 |
|
| 9 |
from typing import List, Dict, Tuple
|
| 10 |
import networkx as nx
|
| 11 |
|
|
|
|
| 12 |
# ----------------------------------------------------------------------
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
def build_nx(nodes: List[Dict], edges: List[Dict]) -> nx.Graph:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
G = nx.Graph()
|
|
|
|
|
|
|
| 15 |
for n in nodes:
|
| 16 |
G.add_node(n["id"], label=n.get("label", n["id"]))
|
|
|
|
|
|
|
| 17 |
for e in edges:
|
| 18 |
-
|
|
|
|
|
|
|
|
|
|
| 19 |
return G
|
| 20 |
|
| 21 |
|
|
|
|
| 22 |
def get_top_hubs(G: nx.Graph, k: int = 5) -> List[Tuple[str, float]]:
|
| 23 |
-
"""
|
| 24 |
-
Return [(node_id, centrality)] sorted desc.
|
| 25 |
-
"""
|
| 26 |
dc = nx.degree_centrality(G)
|
| 27 |
return sorted(dc.items(), key=lambda x: x[1], reverse=True)[:k]
|
| 28 |
|
| 29 |
|
| 30 |
def get_density(G: nx.Graph) -> float:
|
|
|
|
| 31 |
return nx.density(G)
|
|
|
|
|
|
|
| 1 |
"""
|
| 2 |
+
Basic NetworkX helpers for MedGenesis graphs.
|
| 3 |
+
|
| 4 |
+
Key improvement:
|
| 5 |
+
build_nx() now accepts edge dictionaries in either of the two
|
| 6 |
+
common formats:
|
| 7 |
+
|
| 8 |
+
β’ {'source': 'n1', 'target': 'n2'} (Streamlit-agraph)
|
| 9 |
+
β’ {'from': 'n1', 'to': 'n2'} (PyVis)
|
| 10 |
+
|
| 11 |
+
This prevents KeyError crashes when nodes / edges come from different
|
| 12 |
+
UI toolchains.
|
| 13 |
"""
|
| 14 |
|
| 15 |
from typing import List, Dict, Tuple
|
| 16 |
import networkx as nx
|
| 17 |
|
| 18 |
+
|
| 19 |
# ----------------------------------------------------------------------
|
| 20 |
+
def _edge_endpoints(e: Dict) -> Tuple[str, str] | None:
|
| 21 |
+
"""Return (src, dst) if both ends exist; otherwise None."""
|
| 22 |
+
src = e.get("source") or e.get("from")
|
| 23 |
+
dst = e.get("target") or e.get("to")
|
| 24 |
+
if src and dst:
|
| 25 |
+
return src, dst
|
| 26 |
+
return None
|
| 27 |
+
|
| 28 |
+
|
| 29 |
def build_nx(nodes: List[Dict], edges: List[Dict]) -> nx.Graph:
|
| 30 |
+
"""
|
| 31 |
+
Convert agraph/PyVis node+edge dicts into a NetworkX Graph.
|
| 32 |
+
|
| 33 |
+
* Skips malformed edges rather than raising KeyError.
|
| 34 |
+
* Node label stored as attribute 'label'.
|
| 35 |
+
"""
|
| 36 |
G = nx.Graph()
|
| 37 |
+
|
| 38 |
+
# add nodes
|
| 39 |
for n in nodes:
|
| 40 |
G.add_node(n["id"], label=n.get("label", n["id"]))
|
| 41 |
+
|
| 42 |
+
# add edges
|
| 43 |
for e in edges:
|
| 44 |
+
endpoints = _edge_endpoints(e)
|
| 45 |
+
if endpoints:
|
| 46 |
+
G.add_edge(*endpoints)
|
| 47 |
+
|
| 48 |
return G
|
| 49 |
|
| 50 |
|
| 51 |
+
# ----------------------------------------------------------------------
|
| 52 |
def get_top_hubs(G: nx.Graph, k: int = 5) -> List[Tuple[str, float]]:
|
| 53 |
+
"""Top-k nodes by degree centrality."""
|
|
|
|
|
|
|
| 54 |
dc = nx.degree_centrality(G)
|
| 55 |
return sorted(dc.items(), key=lambda x: x[1], reverse=True)[:k]
|
| 56 |
|
| 57 |
|
| 58 |
def get_density(G: nx.Graph) -> float:
|
| 59 |
+
"""Return graph density in [0,1]."""
|
| 60 |
return nx.density(G)
|