Update mcp/graph_metrics.py
Browse files- mcp/graph_metrics.py +11 -81
mcp/graph_metrics.py
CHANGED
@@ -1,97 +1,27 @@
|
|
1 |
# mcp/graph_metrics.py
|
2 |
-
|
3 |
-
Tiny NetworkX helpers for MedGenesis graphs.
|
4 |
-
|
5 |
-
β¨ 2025-06-25 REVAMP
|
6 |
-
ββββββββββββββββββββ
|
7 |
-
β’ Accepts edge-dicts that use either
|
8 |
-
{'source': 'n1', 'target': 'n2'} β agraph / d3.js
|
9 |
-
or {'from' : 'n1', 'to' : 'n2'} β PyVis
|
10 |
-
|
11 |
-
β’ Silently skips malformed edges (no more KeyError).
|
12 |
-
|
13 |
-
β’ Works whether you pass plain dicts or streamlit-agraph Node/Edge objects.
|
14 |
-
"""
|
15 |
-
|
16 |
-
from __future__ import annotations
|
17 |
-
|
18 |
import networkx as nx
|
19 |
-
from typing import List, Dict, Tuple, Union
|
20 |
|
21 |
-
|
22 |
-
# ββ helpers -----------------------------------------------------------------
|
23 |
-
def _edge_ends(e: Dict) -> Tuple[str, str] | None:
|
24 |
-
"""
|
25 |
-
Normalise edge formats.
|
26 |
-
|
27 |
-
Returns
|
28 |
-
-------
|
29 |
-
(src, dst) tuple β or None if either endpoint is missing.
|
30 |
-
"""
|
31 |
src = e.get("source") or e.get("from")
|
32 |
dst = e.get("target") or e.get("to")
|
33 |
-
if src and dst
|
34 |
-
return str(src), str(dst)
|
35 |
-
return None
|
36 |
-
|
37 |
-
|
38 |
-
def _node_id(n: Union[Dict, object]) -> str:
|
39 |
-
"""
|
40 |
-
Accept either a dict *or* a streamlit_agraph.Node and return its id.
|
41 |
-
"""
|
42 |
-
if isinstance(n, dict):
|
43 |
-
return str(n.get("id"))
|
44 |
-
# fallback for Node dataclass
|
45 |
-
return str(getattr(n, "id", ""))
|
46 |
|
47 |
-
|
48 |
-
def _node_label(n: Union[Dict, object]) -> str:
|
49 |
-
"""
|
50 |
-
Extract label safely from dict or Node.
|
51 |
-
"""
|
52 |
-
if isinstance(n, dict):
|
53 |
-
return str(n.get("label", n.get("id")))
|
54 |
-
return str(getattr(n, "label", getattr(n, "id", "")))
|
55 |
-
|
56 |
-
|
57 |
-
# ββ public API --------------------------------------------------------------
|
58 |
-
def build_nx(
|
59 |
-
nodes: List[Dict | object],
|
60 |
-
edges: List[Dict | object],
|
61 |
-
) -> nx.Graph:
|
62 |
-
"""
|
63 |
-
Convert generic node/edge payloads into a NetworkX graph.
|
64 |
-
"""
|
65 |
G = nx.Graph()
|
66 |
-
|
67 |
-
# add nodes
|
68 |
for n in nodes:
|
69 |
-
nid =
|
70 |
-
if
|
71 |
-
|
72 |
-
G.add_node(nid, label=_node_label(n))
|
73 |
-
|
74 |
-
# add edges
|
75 |
for e in edges:
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
if ends:
|
80 |
-
G.add_edge(*ends)
|
81 |
-
|
82 |
return G
|
83 |
|
84 |
-
|
85 |
-
def get_top_hubs(G: nx.Graph, k: int = 5) -> List[Tuple[str, float]]:
|
86 |
-
"""
|
87 |
-
Return top-k nodes by **degree centrality**.
|
88 |
-
"""
|
89 |
dc = nx.degree_centrality(G)
|
90 |
return sorted(dc.items(), key=lambda x: x[1], reverse=True)[:k]
|
91 |
|
92 |
-
|
93 |
def get_density(G: nx.Graph) -> float:
|
94 |
-
"""
|
95 |
-
Graph density in [0, 1].
|
96 |
-
"""
|
97 |
return nx.density(G)
|
|
|
1 |
# mcp/graph_metrics.py
|
2 |
+
from typing import List, Dict, Tuple
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
import networkx as nx
|
|
|
4 |
|
5 |
+
def _edge_endpoints(e: Dict) -> Tuple[str,str] | None:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
src = e.get("source") or e.get("from")
|
7 |
dst = e.get("target") or e.get("to")
|
8 |
+
return (src,dst) if src and dst else None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
+
def build_nx(nodes: List[Dict], edges: List[Dict]) -> nx.Graph:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
G = nx.Graph()
|
|
|
|
|
12 |
for n in nodes:
|
13 |
+
nid = n.get("id")
|
14 |
+
if nid:
|
15 |
+
G.add_node(nid, label=n.get("label", nid))
|
|
|
|
|
|
|
16 |
for e in edges:
|
17 |
+
pts = _edge_endpoints(e)
|
18 |
+
if pts:
|
19 |
+
G.add_edge(*pts)
|
|
|
|
|
|
|
20 |
return G
|
21 |
|
22 |
+
def get_top_hubs(G: nx.Graph, k: int = 5):
|
|
|
|
|
|
|
|
|
23 |
dc = nx.degree_centrality(G)
|
24 |
return sorted(dc.items(), key=lambda x: x[1], reverse=True)[:k]
|
25 |
|
|
|
26 |
def get_density(G: nx.Graph) -> float:
|
|
|
|
|
|
|
27 |
return nx.density(G)
|