Update mcp/orchestrator.py
Browse files- mcp/orchestrator.py +113 -74
mcp/orchestrator.py
CHANGED
@@ -1,92 +1,131 @@
|
|
|
|
1 |
"""
|
2 |
-
MedGenesis β dual
|
3 |
-
|
4 |
-
β’ Accepts `llm`
|
5 |
-
β’
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
"""
|
7 |
|
8 |
-
import
|
9 |
-
|
10 |
-
|
11 |
-
from
|
12 |
-
|
13 |
-
|
14 |
-
from mcp.
|
15 |
-
from mcp.
|
16 |
-
|
17 |
-
|
18 |
-
from mcp.
|
19 |
-
from mcp.
|
20 |
-
from mcp.
|
21 |
-
|
22 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
def _get_llm(llm: str):
|
24 |
-
|
|
|
25 |
return gemini_summarize, gemini_qa
|
26 |
-
return ai_summarize, ai_qa
|
27 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
|
29 |
-
|
30 |
-
jobs = []
|
31 |
-
for k in keys:
|
32 |
-
jobs += [search_gene(k), get_mesh_definition(k), disease_to_genes(k)]
|
33 |
-
res = await asyncio.gather(*jobs, return_exceptions=True)
|
34 |
|
35 |
-
genes,
|
36 |
-
|
37 |
-
|
|
|
38 |
continue
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
|
|
|
|
|
|
43 |
|
|
|
44 |
|
45 |
# ------------------------------------------------------------------
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
"""
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
|
|
|
|
|
|
|
|
70 |
)
|
71 |
|
72 |
-
# 4)
|
73 |
-
|
74 |
-
|
75 |
|
|
|
76 |
return {
|
77 |
-
"papers"
|
78 |
-
"umls"
|
79 |
-
"drug_safety"
|
80 |
-
"ai_summary"
|
81 |
-
"llm_used"
|
82 |
-
"genes" : genes["genes"],
|
83 |
-
"mesh_defs" : genes["meshes"],
|
84 |
-
"gene_disease" : genes["disgenet"],
|
85 |
-
"clinical_trials" : trials,
|
86 |
-
}
|
87 |
|
|
|
|
|
|
|
|
|
88 |
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
"""
|
3 |
+
MedGenesis β dualβLLM asynchronous orchestrator
|
4 |
+
==============================================
|
5 |
+
β’ Accepts `llm` argument ("openai" | "gemini"), defaults to "openai".
|
6 |
+
β’ Harvests literature (PubMedβ―+β―arXiv) β extracts keywords.
|
7 |
+
β’ Fansβout to open APIs for genes, trials, safety, ontology:
|
8 |
+
β **MyGene.info** for live gene annotations
|
9 |
+
β **ClinicalTrials.govΒ v2** for recruiting & completed studies
|
10 |
+
β UMLSβ―/β―openFDAβ―/β―DisGeNETβ―/β―MeSH (existing helpers)
|
11 |
+
β Optional OpenΒ Targets & DrugCentral via `multi_enrich` if needed.
|
12 |
+
β’ Returns a single JSONβserialisable dict consumed by the Streamlit UI.
|
13 |
"""
|
14 |
|
15 |
+
from __future__ import annotations
|
16 |
+
|
17 |
+
import asyncio
|
18 |
+
from typing import Any, Dict, List
|
19 |
+
|
20 |
+
# ββ Literature fetchers βββββββββββββββββββββββββββββββββββββββββββββ
|
21 |
+
from mcp.arxiv import fetch_arxiv
|
22 |
+
from mcp.pubmed import fetch_pubmed
|
23 |
+
|
24 |
+
# ββ NLP & legacy enrichers βββββββββββββββββββββββββββββββββββββββββ
|
25 |
+
from mcp.nlp import extract_keywords
|
26 |
+
from mcp.umls import lookup_umls
|
27 |
+
from mcp.openfda import fetch_drug_safety
|
28 |
+
from mcp.ncbi import search_gene, get_mesh_definition
|
29 |
+
from mcp.disgenet import disease_to_genes
|
30 |
+
|
31 |
+
# ββ Modern highβthroughput APIs ββββββββββββββββββββββββββββββββββββ
|
32 |
+
from mcp.mygene import fetch_gene_info # MyGene.info
|
33 |
+
from mcp.ctgov import search_trials_v2 # ClinicalTrials.gov v2
|
34 |
+
# from mcp.targets import fetch_ot_associations # (optional future use)
|
35 |
+
|
36 |
+
# ββ LLM utilities βββββββββββββββββββββββββββββββββββββββββββββββββ
|
37 |
+
from mcp.openai_utils import ai_summarize, ai_qa
|
38 |
+
from mcp.gemini import gemini_summarize, gemini_qa
|
39 |
+
|
40 |
+
# ------------------------------------------------------------------
|
41 |
+
# LLM router
|
42 |
+
# ------------------------------------------------------------------
|
43 |
+
|
44 |
def _get_llm(llm: str):
|
45 |
+
"""Return (summarize_fn, qa_fn) based on requested engine."""
|
46 |
+
if llm and llm.lower() == "gemini":
|
47 |
return gemini_summarize, gemini_qa
|
48 |
+
return ai_summarize, ai_qa # default β OpenAI
|
49 |
|
50 |
+
# ------------------------------------------------------------------
|
51 |
+
# Helper: batch NCBIΒ /Β MeSHΒ /Β DisGeNET enrichment for keyword list
|
52 |
+
# ------------------------------------------------------------------
|
53 |
+
async def _enrich_ncbi_mesh_disg(keys: List[str]) -> Dict[str, Any]:
|
54 |
+
jobs = [search_gene(k) for k in keys] + \
|
55 |
+
[get_mesh_definition(k) for k in keys] + \
|
56 |
+
[disease_to_genes(k) for k in keys]
|
57 |
|
58 |
+
results = await asyncio.gather(*jobs, return_exceptions=True)
|
|
|
|
|
|
|
|
|
59 |
|
60 |
+
genes, mesh_defs, disg_links = [], [], []
|
61 |
+
n = len(keys)
|
62 |
+
for idx, res in enumerate(results):
|
63 |
+
if isinstance(res, Exception):
|
64 |
continue
|
65 |
+
bucket = idx // n # 0Β =Β gene, 1Β =Β mesh, 2Β =Β disg
|
66 |
+
if bucket == 0:
|
67 |
+
genes.extend(res)
|
68 |
+
elif bucket == 1:
|
69 |
+
mesh_defs.append(res)
|
70 |
+
else:
|
71 |
+
disg_links.extend(res)
|
72 |
|
73 |
+
return {"genes": genes, "meshes": mesh_defs, "disgenet": disg_links}
|
74 |
|
75 |
# ------------------------------------------------------------------
|
76 |
+
# Main orchestrator
|
77 |
+
# ------------------------------------------------------------------
|
78 |
+
async def orchestrate_search(query: str, *, llm: str = "openai") -> Dict[str, Any]:
|
79 |
+
"""Master async pipeline β returns dict consumed by UI."""
|
80 |
+
|
81 |
+
# 1)Β Literature --------------------------------------------------
|
82 |
+
arxiv_task = asyncio.create_task(fetch_arxiv(query))
|
83 |
+
pubmed_task = asyncio.create_task(fetch_pubmed(query))
|
84 |
+
papers = sum(await asyncio.gather(arxiv_task, pubmed_task), [])
|
85 |
+
|
86 |
+
# 2)Β Keyword extraction -----------------------------------------
|
87 |
+
corpus = " ".join(p["summary"] for p in papers)
|
88 |
+
keywords = extract_keywords(corpus)[:8]
|
89 |
+
|
90 |
+
# 3)Β Fanβout enrichment -----------------------------------------
|
91 |
+
umls_tasks = [lookup_umls(k) for k in keywords]
|
92 |
+
fda_tasks = [fetch_drug_safety(k) for k in keywords]
|
93 |
+
|
94 |
+
ncbi_task = asyncio.create_task(_enrich_ncbi_mesh_disg(keywords))
|
95 |
+
mygene_task = asyncio.create_task(fetch_gene_info(query)) # top gene hit
|
96 |
+
trials_task = asyncio.create_task(search_trials_v2(query, max_n=20))
|
97 |
+
|
98 |
+
umls, fda, ncbi_data, mygene, trials = await asyncio.gather(
|
99 |
+
asyncio.gather(*umls_tasks, return_exceptions=True),
|
100 |
+
asyncio.gather(*fda_tasks, return_exceptions=True),
|
101 |
+
ncbi_task,
|
102 |
+
mygene_task,
|
103 |
+
trials_task,
|
104 |
)
|
105 |
|
106 |
+
# 4)Β LLM summary -------------------------------------------------
|
107 |
+
summarize_fn, _ = _get_llm(llm)
|
108 |
+
ai_summary = await summarize_fn(corpus)
|
109 |
|
110 |
+
# 5)Β Assemble payload -------------------------------------------
|
111 |
return {
|
112 |
+
"papers" : papers,
|
113 |
+
"umls" : umls,
|
114 |
+
"drug_safety" : fda,
|
115 |
+
"ai_summary" : ai_summary,
|
116 |
+
"llm_used" : llm.lower(),
|
|
|
|
|
|
|
|
|
|
|
117 |
|
118 |
+
# Gene & variant context
|
119 |
+
"genes" : (ncbi_data["genes"] or []) + ([mygene] if mygene else []),
|
120 |
+
"mesh_defs" : ncbi_data["meshes"],
|
121 |
+
"gene_disease" : ncbi_data["disgenet"],
|
122 |
|
123 |
+
# Clinical trials
|
124 |
+
"clinical_trials": trials,
|
125 |
+
}
|
126 |
+
|
127 |
+
# ------------------------------------------------------------------
|
128 |
+
async def answer_ai_question(question: str, *, context: str, llm: str = "openai") -> Dict[str, str]:
|
129 |
+
"""Oneβshot followβup QA using selected engine."""
|
130 |
+
_, qa_fn = _get_llm(llm)
|
131 |
+
return {"answer": await qa_fn(question, context)}
|