Update app.py
Browse files
app.py
CHANGED
@@ -1,8 +1,9 @@
|
|
1 |
#!/usr/bin/env python3
|
2 |
# MedGenesis AI · CPU-only Streamlit app (OpenAI / Gemini)
|
3 |
|
4 |
-
# ── Streamlit telemetry dir fix ───────────────────────────────────────
|
5 |
import os, pathlib
|
|
|
|
|
6 |
os.environ["STREAMLIT_DATA_DIR"] = "/tmp/.streamlit"
|
7 |
os.environ["XDG_STATE_HOME"] = "/tmp"
|
8 |
os.environ["STREAMLIT_BROWSER_GATHERUSAGESTATS"] = "false"
|
@@ -14,7 +15,7 @@ from pathlib import Path
|
|
14 |
import streamlit as st
|
15 |
import pandas as pd
|
16 |
import plotly.express as px
|
17 |
-
from fpdf import FPDF
|
18 |
from streamlit_agraph import agraph
|
19 |
|
20 |
# ── Internal helpers ────────────────────────────────────────────────
|
@@ -29,7 +30,6 @@ LOGO = ROOT / "assets" / "logo.png"
|
|
29 |
|
30 |
# ── PDF export helper (UTF-8 → Latin-1 “safe”) ──────────────────────
|
31 |
def _latin1_safe(txt: str) -> str:
|
32 |
-
"""Return text that FPDF(latin-1) can embed; replace unknown chars."""
|
33 |
return txt.encode("latin-1", "replace").decode("latin-1")
|
34 |
|
35 |
def _pdf(papers):
|
@@ -71,7 +71,6 @@ def render_ui():
|
|
71 |
st.set_page_config("MedGenesis AI", layout="wide")
|
72 |
_workspace_sidebar()
|
73 |
|
74 |
-
# Header
|
75 |
c1, c2 = st.columns([0.15, 0.85])
|
76 |
with c1:
|
77 |
if LOGO.exists():
|
@@ -81,8 +80,7 @@ def render_ui():
|
|
81 |
st.caption("Multi-source biomedical assistant · OpenAI / Gemini")
|
82 |
|
83 |
llm = st.radio("LLM engine", ["openai", "gemini"], horizontal=True)
|
84 |
-
query = st.text_input("Enter biomedical question",
|
85 |
-
placeholder="e.g. CRISPR glioblastoma therapy")
|
86 |
|
87 |
# Alert check
|
88 |
if get_workspace():
|
@@ -102,10 +100,8 @@ def render_ui():
|
|
102 |
res = asyncio.run(orchestrate_search(query, llm=llm))
|
103 |
st.success(f"Completed with **{res['llm_used'].title()}**")
|
104 |
|
105 |
-
tabs = st.tabs(["Results", "Genes", "Trials", "Graph",
|
106 |
-
"Metrics", "Visuals"])
|
107 |
|
108 |
-
# Results
|
109 |
with tabs[0]:
|
110 |
for i, p in enumerate(res["papers"], 1):
|
111 |
st.markdown(f"**{i}. [{p['title']}]({p['link']})** *{p['authors']}*")
|
@@ -113,12 +109,9 @@ def render_ui():
|
|
113 |
|
114 |
col1, col2 = st.columns(2)
|
115 |
with col1:
|
116 |
-
st.download_button("CSV",
|
117 |
-
pd.DataFrame(res["papers"]).to_csv(index=False),
|
118 |
-
"papers.csv", "text/csv")
|
119 |
with col2:
|
120 |
-
st.download_button("PDF", _pdf(res["papers"]),
|
121 |
-
"papers.pdf", "application/pdf")
|
122 |
|
123 |
if st.button("💾 Save"):
|
124 |
save_query(query, res)
|
@@ -136,12 +129,10 @@ def render_ui():
|
|
136 |
st.subheader("AI summary")
|
137 |
st.info(res["ai_summary"])
|
138 |
|
139 |
-
# Genes
|
140 |
with tabs[1]:
|
141 |
st.header("Gene / Variant signals")
|
142 |
for g in res["genes"]:
|
143 |
-
st.write(f"- **{g.get('name', g.get('geneid'))}** "
|
144 |
-
f"{g.get('description', '')}")
|
145 |
if res["gene_disease"]:
|
146 |
st.markdown("### DisGeNET links")
|
147 |
st.json(res["gene_disease"][:15])
|
@@ -151,21 +142,16 @@ def render_ui():
|
|
151 |
if d:
|
152 |
st.write("-", d)
|
153 |
|
154 |
-
# Trials
|
155 |
with tabs[2]:
|
156 |
st.header("Clinical trials")
|
157 |
if not res["clinical_trials"]:
|
158 |
st.info("No trials (rate-limited or none found).")
|
159 |
for t in res["clinical_trials"]:
|
160 |
st.markdown(f"**{t['NCTId'][0]}** – {t['BriefTitle'][0]}")
|
161 |
-
st.write(f"Phase {t.get('Phase',
|
162 |
-
f"| Status {t['OverallStatus'][0]}")
|
163 |
|
164 |
-
# Graph
|
165 |
with tabs[3]:
|
166 |
-
nodes, edges, cfg = build_agraph(res["papers"],
|
167 |
-
res["umls"],
|
168 |
-
res["drug_safety"])
|
169 |
hl = st.text_input("Highlight node:", key="hl")
|
170 |
if hl:
|
171 |
pat = re.compile(re.escape(hl), re.I)
|
@@ -173,31 +159,29 @@ def render_ui():
|
|
173 |
n.color = "#f1c40f" if pat.search(n.label) else "#d3d3d3"
|
174 |
agraph(nodes, edges, cfg)
|
175 |
|
176 |
-
# Metrics
|
177 |
with tabs[4]:
|
178 |
-
G = build_nx([n.__dict__ for n in nodes],
|
179 |
-
[e.__dict__ for e in edges])
|
180 |
st.metric("Density", f"{get_density(G):.3f}")
|
181 |
st.markdown("**Top hubs**")
|
182 |
for nid, sc in get_top_hubs(G):
|
183 |
lab = next((n.label for n in nodes if n.id == nid), nid)
|
184 |
st.write(f"- {lab} {sc:.3f}")
|
185 |
|
186 |
-
# Visuals
|
187 |
with tabs[5]:
|
188 |
years = [p["published"] for p in res["papers"] if p.get("published")]
|
189 |
if years:
|
190 |
-
st.plotly_chart(px.histogram(years, nbins=12,
|
191 |
-
title="Publication Year"))
|
192 |
|
193 |
-
# Follow-up Q-A
|
194 |
st.markdown("---")
|
195 |
-
follow = st.text_input("Ask follow-up:")
|
196 |
if st.button("Ask AI"):
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
|
|
|
|
201 |
|
202 |
else:
|
203 |
st.info("Enter a question and press **Run Search 🚀**")
|
|
|
1 |
#!/usr/bin/env python3
|
2 |
# MedGenesis AI · CPU-only Streamlit app (OpenAI / Gemini)
|
3 |
|
|
|
4 |
import os, pathlib
|
5 |
+
|
6 |
+
# ── Streamlit telemetry dir fix ───────────────────────────────────────
|
7 |
os.environ["STREAMLIT_DATA_DIR"] = "/tmp/.streamlit"
|
8 |
os.environ["XDG_STATE_HOME"] = "/tmp"
|
9 |
os.environ["STREAMLIT_BROWSER_GATHERUSAGESTATS"] = "false"
|
|
|
15 |
import streamlit as st
|
16 |
import pandas as pd
|
17 |
import plotly.express as px
|
18 |
+
from fpdf import FPDF
|
19 |
from streamlit_agraph import agraph
|
20 |
|
21 |
# ── Internal helpers ────────────────────────────────────────────────
|
|
|
30 |
|
31 |
# ── PDF export helper (UTF-8 → Latin-1 “safe”) ──────────────────────
|
32 |
def _latin1_safe(txt: str) -> str:
|
|
|
33 |
return txt.encode("latin-1", "replace").decode("latin-1")
|
34 |
|
35 |
def _pdf(papers):
|
|
|
71 |
st.set_page_config("MedGenesis AI", layout="wide")
|
72 |
_workspace_sidebar()
|
73 |
|
|
|
74 |
c1, c2 = st.columns([0.15, 0.85])
|
75 |
with c1:
|
76 |
if LOGO.exists():
|
|
|
80 |
st.caption("Multi-source biomedical assistant · OpenAI / Gemini")
|
81 |
|
82 |
llm = st.radio("LLM engine", ["openai", "gemini"], horizontal=True)
|
83 |
+
query = st.text_input("Enter biomedical question", placeholder="e.g. CRISPR glioblastoma therapy")
|
|
|
84 |
|
85 |
# Alert check
|
86 |
if get_workspace():
|
|
|
100 |
res = asyncio.run(orchestrate_search(query, llm=llm))
|
101 |
st.success(f"Completed with **{res['llm_used'].title()}**")
|
102 |
|
103 |
+
tabs = st.tabs(["Results", "Genes", "Trials", "Graph", "Metrics", "Visuals"])
|
|
|
104 |
|
|
|
105 |
with tabs[0]:
|
106 |
for i, p in enumerate(res["papers"], 1):
|
107 |
st.markdown(f"**{i}. [{p['title']}]({p['link']})** *{p['authors']}*")
|
|
|
109 |
|
110 |
col1, col2 = st.columns(2)
|
111 |
with col1:
|
112 |
+
st.download_button("CSV", pd.DataFrame(res["papers"]).to_csv(index=False), "papers.csv", "text/csv")
|
|
|
|
|
113 |
with col2:
|
114 |
+
st.download_button("PDF", _pdf(res["papers"]), "papers.pdf", "application/pdf")
|
|
|
115 |
|
116 |
if st.button("💾 Save"):
|
117 |
save_query(query, res)
|
|
|
129 |
st.subheader("AI summary")
|
130 |
st.info(res["ai_summary"])
|
131 |
|
|
|
132 |
with tabs[1]:
|
133 |
st.header("Gene / Variant signals")
|
134 |
for g in res["genes"]:
|
135 |
+
st.write(f"- **{g.get('name', g.get('geneid'))}** {g.get('description', '')}")
|
|
|
136 |
if res["gene_disease"]:
|
137 |
st.markdown("### DisGeNET links")
|
138 |
st.json(res["gene_disease"][:15])
|
|
|
142 |
if d:
|
143 |
st.write("-", d)
|
144 |
|
|
|
145 |
with tabs[2]:
|
146 |
st.header("Clinical trials")
|
147 |
if not res["clinical_trials"]:
|
148 |
st.info("No trials (rate-limited or none found).")
|
149 |
for t in res["clinical_trials"]:
|
150 |
st.markdown(f"**{t['NCTId'][0]}** – {t['BriefTitle'][0]}")
|
151 |
+
st.write(f"Phase {t.get('Phase',[''])[0]} | Status {t['OverallStatus'][0]}")
|
|
|
152 |
|
|
|
153 |
with tabs[3]:
|
154 |
+
nodes, edges, cfg = build_agraph(res["papers"], res["umls"], res["drug_safety"])
|
|
|
|
|
155 |
hl = st.text_input("Highlight node:", key="hl")
|
156 |
if hl:
|
157 |
pat = re.compile(re.escape(hl), re.I)
|
|
|
159 |
n.color = "#f1c40f" if pat.search(n.label) else "#d3d3d3"
|
160 |
agraph(nodes, edges, cfg)
|
161 |
|
|
|
162 |
with tabs[4]:
|
163 |
+
G = build_nx([n.__dict__ for n in nodes], [e.__dict__ for e in edges])
|
|
|
164 |
st.metric("Density", f"{get_density(G):.3f}")
|
165 |
st.markdown("**Top hubs**")
|
166 |
for nid, sc in get_top_hubs(G):
|
167 |
lab = next((n.label for n in nodes if n.id == nid), nid)
|
168 |
st.write(f"- {lab} {sc:.3f}")
|
169 |
|
|
|
170 |
with tabs[5]:
|
171 |
years = [p["published"] for p in res["papers"] if p.get("published")]
|
172 |
if years:
|
173 |
+
st.plotly_chart(px.histogram(years, nbins=12, title="Publication Year"))
|
|
|
174 |
|
175 |
+
# ── Follow-up Q-A (fixed) ───────────────────────────────────────
|
176 |
st.markdown("---")
|
177 |
+
follow = st.text_input("Ask follow-up question:", key="followup_input") # ✅ UPDATED
|
178 |
if st.button("Ask AI"):
|
179 |
+
if follow.strip(): # ✅ UPDATED
|
180 |
+
with st.spinner("Generating AI response..."):
|
181 |
+
ans = asyncio.run(answer_ai_question(follow, context=query, llm=llm))
|
182 |
+
st.write(ans["answer"])
|
183 |
+
else:
|
184 |
+
st.warning("Please type a follow-up question before submitting.") # ✅ UPDATED
|
185 |
|
186 |
else:
|
187 |
st.info("Enter a question and press **Run Search 🚀**")
|