Update mcp/nlp.py
Browse files- mcp/nlp.py +27 -23
mcp/nlp.py
CHANGED
@@ -1,30 +1,34 @@
|
|
1 |
# mcp/nlp.py
|
|
|
2 |
import spacy
|
3 |
-
from
|
|
|
4 |
|
5 |
-
|
6 |
-
|
7 |
-
nlp = spacy.load("
|
8 |
-
|
9 |
-
|
10 |
-
|
|
|
|
|
11 |
|
12 |
-
|
13 |
-
|
14 |
-
def extract_umls_concepts(text: str) -> list[dict]:
|
15 |
"""
|
16 |
-
|
|
|
|
|
17 |
"""
|
18 |
doc = nlp(text)
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
return
|
|
|
1 |
# mcp/nlp.py
|
2 |
+
import asyncio
|
3 |
import spacy
|
4 |
+
from typing import List, Dict
|
5 |
+
from mcp.umls import lookup_umls
|
6 |
|
7 |
+
# Load only the small English model
|
8 |
+
try:
|
9 |
+
nlp = spacy.load("en_core_web_sm")
|
10 |
+
except OSError:
|
11 |
+
# In case it wasn’t downloaded yet
|
12 |
+
from spacy.cli import download
|
13 |
+
download("en_core_web_sm")
|
14 |
+
nlp = spacy.load("en_core_web_sm")
|
15 |
|
16 |
+
async def extract_umls_concepts(text: str) -> List[Dict]:
|
|
|
|
|
17 |
"""
|
18 |
+
1) Run spaCy NER on the text
|
19 |
+
2) For each unique entity, do an async UMLS lookup
|
20 |
+
3) Return the list of successful concept dicts
|
21 |
"""
|
22 |
doc = nlp(text)
|
23 |
+
terms = {ent.text for ent in doc.ents if len(ent.text.strip()) > 2}
|
24 |
+
|
25 |
+
# Kick off all lookups in parallel
|
26 |
+
tasks = [lookup_umls(term) for term in terms]
|
27 |
+
results = await asyncio.gather(*tasks, return_exceptions=True)
|
28 |
+
|
29 |
+
# Filter out failures & concepts without CUI
|
30 |
+
concepts = []
|
31 |
+
for r in results:
|
32 |
+
if isinstance(r, dict) and r.get("cui"):
|
33 |
+
concepts.append(r)
|
34 |
+
return concepts
|