Update mcp/orchestrator.py
Browse files- mcp/orchestrator.py +84 -96
mcp/orchestrator.py
CHANGED
@@ -1,30 +1,23 @@
|
|
1 |
#!/usr/bin/env python3
|
2 |
"""
|
3 |
-
mcp/orchestrator.py
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
•
|
10 |
-
•
|
11 |
-
• UMLS
|
12 |
-
•
|
13 |
-
•
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
LLM engines
|
23 |
-
───────────
|
24 |
-
OpenAI GPT-4o (default) or Gemini 1.5-Flash/Pro via router.
|
25 |
-
|
26 |
-
Return payload keys (used by Streamlit UI)
|
27 |
-
──────────────────────────────────────────
|
28 |
papers, ai_summary, llm_used, umls, drug_safety,
|
29 |
genes_rich, expr_atlas, drug_meta, chem_info,
|
30 |
gene_disease, clinical_trials, cbio_variants
|
@@ -37,126 +30,121 @@ from typing import Dict, Any, List
|
|
37 |
# ── Literature ──────────────────────────────────────────────────────
|
38 |
from mcp.arxiv import fetch_arxiv
|
39 |
from mcp.pubmed import fetch_pubmed
|
40 |
-
from mcp.ncbi_turbo import pubmed_ids # fast IDs
|
41 |
|
42 |
-
# ── NLP +
|
43 |
from mcp.nlp import extract_keywords
|
44 |
from mcp.umls import lookup_umls
|
45 |
from mcp.openfda import fetch_drug_safety
|
46 |
from mcp.disgenet import disease_to_genes
|
47 |
from mcp.clinicaltrials import search_trials
|
48 |
|
49 |
-
# Gene / expression
|
50 |
-
from mcp.gene_hub import resolve_gene
|
51 |
from mcp.atlas import fetch_expression
|
52 |
-
from mcp.cbio import fetch_cbio
|
53 |
|
54 |
-
# Drug metadata
|
55 |
from mcp.drugcentral_ext import fetch_drugcentral
|
56 |
from mcp.pubchem_ext import fetch_compound
|
57 |
|
58 |
-
# ──
|
59 |
from mcp.openai_utils import ai_summarize, ai_qa
|
60 |
from mcp.gemini import gemini_summarize, gemini_qa
|
61 |
|
62 |
_LLM_DEFAULT = "openai"
|
63 |
|
64 |
# ────────────────────────────────────────────────────────────────────
|
65 |
-
#
|
66 |
# ────────────────────────────────────────────────────────────────────
|
67 |
def _llm_router(name: str):
|
68 |
-
"""Return (summarise_fn, qa_fn,
|
69 |
if name.lower() == "gemini":
|
70 |
return gemini_summarize, gemini_qa, "gemini"
|
71 |
return ai_summarize, ai_qa, "openai"
|
72 |
|
73 |
|
74 |
-
async def _fanout_keywords(keys: List[str]) -> Dict[str, Any]:
|
75 |
-
"""Run UMLS, safety, gene, expression, drug meta in parallel."""
|
76 |
-
umls_f = [lookup_umls(k) for k in keys]
|
77 |
-
fda_f = [fetch_drug_safety(k) for k in keys]
|
78 |
-
gene_f = [resolve_gene(k) for k in keys]
|
79 |
-
expr_f = [fetch_expression(k) for k in keys]
|
80 |
-
drug_f = [fetch_drugcentral(k) for k in keys]
|
81 |
-
chem_f = [fetch_compound(k) for k in keys]
|
82 |
-
|
83 |
-
umls, fda, genes, exprs, dmeta, chem = await asyncio.gather(
|
84 |
-
asyncio.gather(*umls_f, return_exceptions=True),
|
85 |
-
asyncio.gather(*fda_f, return_exceptions=True),
|
86 |
-
asyncio.gather(*gene_f, return_exceptions=True),
|
87 |
-
asyncio.gather(*expr_f, return_exceptions=True),
|
88 |
-
asyncio.gather(*drug_f, return_exceptions=True),
|
89 |
-
asyncio.gather(*chem_f, return_exceptions=True),
|
90 |
-
)
|
91 |
-
|
92 |
-
return {
|
93 |
-
"umls" : [u for u in umls if isinstance(u, dict)],
|
94 |
-
"fda" : [d for d in fda if d],
|
95 |
-
"genes" : [g for g in genes if g],
|
96 |
-
"expr" : [e for e in exprs if e],
|
97 |
-
"drug_meta" : [d for d in dmeta if d],
|
98 |
-
"chem_info" : [c for c in chem if c],
|
99 |
-
}
|
100 |
-
|
101 |
-
|
102 |
# ────────────────────────────────────────────────────────────────────
|
103 |
-
#
|
104 |
# ────────────────────────────────────────────────────────────────────
|
105 |
async def orchestrate_search(query: str,
|
106 |
llm: str = _LLM_DEFAULT) -> Dict[str, Any]:
|
107 |
-
"""Run
|
108 |
-
# 1
|
109 |
-
|
110 |
-
|
111 |
|
112 |
papers: List[Dict] = []
|
113 |
-
for
|
114 |
-
if not isinstance(
|
115 |
-
papers.extend(
|
116 |
|
117 |
-
# 2
|
118 |
corpus = " ".join(p.get("summary", "") for p in papers)
|
119 |
keywords = extract_keywords(corpus)[:10]
|
120 |
|
121 |
-
# 3
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
|
|
|
|
135 |
|
136 |
-
#
|
137 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
138 |
ai_summary = await summarise(corpus) if corpus else ""
|
139 |
|
140 |
-
#
|
141 |
return {
|
142 |
"papers" : papers,
|
143 |
"ai_summary" : ai_summary,
|
144 |
-
"llm_used" :
|
145 |
-
"umls" :
|
146 |
-
"drug_safety" :
|
147 |
-
"genes_rich" :
|
148 |
-
"expr_atlas" :
|
149 |
-
"drug_meta" :
|
150 |
-
"chem_info" :
|
151 |
"gene_disease" : gene_dis,
|
152 |
"clinical_trials" : trials,
|
153 |
"cbio_variants" : cbio_vars,
|
154 |
}
|
155 |
|
156 |
|
|
|
|
|
|
|
157 |
async def answer_ai_question(question: str, *,
|
158 |
context: str,
|
159 |
llm: str = _LLM_DEFAULT) -> Dict[str, str]:
|
160 |
-
"""
|
161 |
_, qa_fn, _ = _llm_router(llm)
|
162 |
return {"answer": await qa_fn(question, context=context)}
|
|
|
1 |
#!/usr/bin/env python3
|
2 |
"""
|
3 |
+
mcp/orchestrator.py — MedGenesis v5
|
4 |
+
───────────────────────────────────
|
5 |
+
Asynchronously fan-outs across >10 open biomedical APIs, then returns
|
6 |
+
one consolidated dictionary for the Streamlit UI.
|
7 |
+
|
8 |
+
Public-key–free by default:
|
9 |
+
• MyGene.info, Ensembl REST, Open Targets GraphQL
|
10 |
+
• PubMed (E-utils), arXiv
|
11 |
+
• UMLS, openFDA, DisGeNET
|
12 |
+
• Expression Atlas, ClinicalTrials.gov (+ WHO ICTRP fallback)
|
13 |
+
• cBioPortal, DrugCentral, PubChem
|
14 |
+
|
15 |
+
If you add secrets **MYGENE_KEY**, **OT_KEY**, **CBIO_KEY** or
|
16 |
+
**NCBI_EUTILS_KEY**, they are auto-detected and used — otherwise the code
|
17 |
+
runs key-less.
|
18 |
+
|
19 |
+
Returned payload keys
|
20 |
+
─────────────────────
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
papers, ai_summary, llm_used, umls, drug_safety,
|
22 |
genes_rich, expr_atlas, drug_meta, chem_info,
|
23 |
gene_disease, clinical_trials, cbio_variants
|
|
|
30 |
# ── Literature ──────────────────────────────────────────────────────
|
31 |
from mcp.arxiv import fetch_arxiv
|
32 |
from mcp.pubmed import fetch_pubmed
|
|
|
33 |
|
34 |
+
# ── NLP + enrichment ────────────────────────────────────────────────
|
35 |
from mcp.nlp import extract_keywords
|
36 |
from mcp.umls import lookup_umls
|
37 |
from mcp.openfda import fetch_drug_safety
|
38 |
from mcp.disgenet import disease_to_genes
|
39 |
from mcp.clinicaltrials import search_trials
|
40 |
|
41 |
+
# Gene / expression modules
|
42 |
+
from mcp.gene_hub import resolve_gene # MyGene → Ensembl → OT
|
43 |
from mcp.atlas import fetch_expression
|
44 |
+
from mcp.cbio import fetch_cbio # cancer variants
|
45 |
|
46 |
+
# Drug metadata & chemistry
|
47 |
from mcp.drugcentral_ext import fetch_drugcentral
|
48 |
from mcp.pubchem_ext import fetch_compound
|
49 |
|
50 |
+
# ── Large-language model helpers ────────────────────────────────────
|
51 |
from mcp.openai_utils import ai_summarize, ai_qa
|
52 |
from mcp.gemini import gemini_summarize, gemini_qa
|
53 |
|
54 |
_LLM_DEFAULT = "openai"
|
55 |
|
56 |
# ────────────────────────────────────────────────────────────────────
|
57 |
+
# LLM router
|
58 |
# ────────────────────────────────────────────────────────────────────
|
59 |
def _llm_router(name: str):
|
60 |
+
"""Return (summarise_fn, qa_fn, engine_tag)."""
|
61 |
if name.lower() == "gemini":
|
62 |
return gemini_summarize, gemini_qa, "gemini"
|
63 |
return ai_summarize, ai_qa, "openai"
|
64 |
|
65 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
# ────────────────────────────────────────────────────────────────────
|
67 |
+
# Main orchestrator
|
68 |
# ────────────────────────────────────────────────────────────────────
|
69 |
async def orchestrate_search(query: str,
|
70 |
llm: str = _LLM_DEFAULT) -> Dict[str, Any]:
|
71 |
+
"""Run the complete async pipeline; always resolves without raising."""
|
72 |
+
# 1 Literature ---------------------------------------------------
|
73 |
+
arxiv_f = asyncio.create_task(fetch_arxiv(query, max_results=10))
|
74 |
+
pubmed_f = asyncio.create_task(fetch_pubmed(query, max_results=10))
|
75 |
|
76 |
papers: List[Dict] = []
|
77 |
+
for res in await asyncio.gather(arxiv_f, pubmed_f, return_exceptions=True):
|
78 |
+
if not isinstance(res, Exception):
|
79 |
+
papers.extend(res)
|
80 |
|
81 |
+
# 2 Keyword extraction ------------------------------------------
|
82 |
corpus = " ".join(p.get("summary", "") for p in papers)
|
83 |
keywords = extract_keywords(corpus)[:10]
|
84 |
|
85 |
+
# 3 Parallel enrichment -----------------------------------------
|
86 |
+
umls_jobs = [lookup_umls(k) for k in keywords]
|
87 |
+
fda_jobs = [fetch_drug_safety(k) for k in keywords]
|
88 |
+
gene_jobs = [resolve_gene(k) for k in keywords]
|
89 |
+
expr_jobs = [fetch_expression(k) for k in keywords]
|
90 |
+
drug_jobs = [fetch_drugcentral(k) for k in keywords]
|
91 |
+
chem_jobs = [fetch_compound(k) for k in keywords]
|
92 |
+
|
93 |
+
umls, fda, genes, exprs, drugs, chems = await asyncio.gather(
|
94 |
+
asyncio.gather(*umls_jobs, return_exceptions=True),
|
95 |
+
asyncio.gather(*fda_jobs, return_exceptions=True),
|
96 |
+
asyncio.gather(*gene_jobs, return_exceptions=True),
|
97 |
+
asyncio.gather(*expr_jobs, return_exceptions=True),
|
98 |
+
asyncio.gather(*drug_jobs, return_exceptions=True),
|
99 |
+
asyncio.gather(*chem_jobs, return_exceptions=True),
|
100 |
+
)
|
101 |
|
102 |
+
# filter out errors / empty payloads
|
103 |
+
umls = [u for u in umls if isinstance(u, dict)]
|
104 |
+
fda = [d for d in fda if d]
|
105 |
+
genes = [g for g in genes if g]
|
106 |
+
exprs = [e for e in exprs if e]
|
107 |
+
drugs = [d for d in drugs if d]
|
108 |
+
chems = [c for c in chems if c]
|
109 |
+
|
110 |
+
# 4 Other single-shot APIs --------------------------------------
|
111 |
+
gene_dis = await disease_to_genes(query)
|
112 |
+
trials = await search_trials(query, max_studies=20)
|
113 |
+
|
114 |
+
# Cancer variants for first 3 gene symbols (quota safety)
|
115 |
+
cbio_jobs = [fetch_cbio(g.get("symbol", "")) for g in genes[:3]]
|
116 |
+
cbio_vars = []
|
117 |
+
if cbio_jobs:
|
118 |
+
tmp = await asyncio.gather(*cbio_jobs, return_exceptions=True)
|
119 |
+
cbio_vars = [v for v in tmp if v]
|
120 |
+
|
121 |
+
# 5 AI summary ---------------------------------------------------
|
122 |
+
summarise, _, engine_tag = _llm_router(llm)
|
123 |
ai_summary = await summarise(corpus) if corpus else ""
|
124 |
|
125 |
+
# 6 Return payload ----------------------------------------------
|
126 |
return {
|
127 |
"papers" : papers,
|
128 |
"ai_summary" : ai_summary,
|
129 |
+
"llm_used" : engine_tag,
|
130 |
+
"umls" : umls,
|
131 |
+
"drug_safety" : fda,
|
132 |
+
"genes_rich" : genes,
|
133 |
+
"expr_atlas" : exprs,
|
134 |
+
"drug_meta" : drugs,
|
135 |
+
"chem_info" : chems,
|
136 |
"gene_disease" : gene_dis,
|
137 |
"clinical_trials" : trials,
|
138 |
"cbio_variants" : cbio_vars,
|
139 |
}
|
140 |
|
141 |
|
142 |
+
# ────────────────────────────────────────────────────────────────────
|
143 |
+
# Follow-up question-answer
|
144 |
+
# ────────────────────────────────────────────────────────────────────
|
145 |
async def answer_ai_question(question: str, *,
|
146 |
context: str,
|
147 |
llm: str = _LLM_DEFAULT) -> Dict[str, str]:
|
148 |
+
"""Return {"answer": str} using chosen LLM."""
|
149 |
_, qa_fn, _ = _llm_router(llm)
|
150 |
return {"answer": await qa_fn(question, context=context)}
|