File size: 4,913 Bytes
6145bc0
64f8a92
84b93bb
 
64f8a92
 
 
84b93bb
 
864b488
 
 
 
 
 
84b93bb
864b488
 
 
 
 
 
84b93bb
864b488
 
 
 
84b93bb
 
0a2437f
864b488
64f8a92
84b93bb
 
0a2437f
 
bea13ba
0a2437f
 
84b93bb
 
64f8a92
 
0a2437f
84b93bb
 
 
0a2437f
84b93bb
0a2437f
 
 
 
84b93bb
64f8a92
0a2437f
 
84b93bb
0a2437f
84b93bb
bea13ba
64f8a92
 
bea13ba
84b93bb
 
64f8a92
bea13ba
84b93bb
 
0a2437f
84b93bb
0a2437f
84b93bb
bea13ba
 
84b93bb
64f8a92
0a2437f
 
bea13ba
64f8a92
 
 
bea13ba
 
 
64f8a92
84b93bb
64f8a92
864b488
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
import streamlit as st

# ──────────────────────────────────────────────────────────────────────────────
# 1) Initialize DB (imports models under the hood, then create_all)
from models.db import init_db
init_db()

# ──────────────────────────────────────────────────────────────────────────────
# 2) First-run admin signup (before any queries to the user table)
from repositories.user_repo import UserRepo
from config.settings import settings

repo = UserRepo(settings.database_url)
if not repo.get_all_users():
    st.title("πŸš€ Welcome to Quantum Healthcare AI")
    st.warning("No users exist yet. Create the first admin account below:")
    new_user = st.text_input("Username")
    new_name = st.text_input("Full name")
    new_pw   = st.text_input("Password", type="password")
    if st.button("Create Admin User"):
        if new_user and new_name and new_pw:
            repo.add_user(new_user, new_name, new_pw)
            st.success(f"βœ… Admin `{new_user}` created! Refresh the page to log in.")
        else:
            st.error("All fields are required.")
    st.stop()

# ──────────────────────────────────────────────────────────────────────────────
# 3) Authentication
from services.auth import authenticator, require_login
username = require_login()

# ──────────────────────────────────────────────────────────────────────────────
# 4) Core services & repositories
from agent.gemini_agent import chat_with_gemini
from clinical_nlp.umls_bioportal import lookup_umls, lookup_bioportal
from quantum.optimizer import optimize_treatment
from repositories.chat_repo import ChatRepo

# ──────────────────────────────────────────────────────────────────────────────
# 5) Logging & metrics
from services.logger import logger
from services.metrics import CHAT_COUNT, OPTIMIZE_COUNT

# ──────────────────────────────────────────────────────────────────────────────
# 6) UI Layout
st.set_page_config(page_title="Quantum Healthcare AI", layout="wide")
st.image("assets/logo.png", width=64)
st.title(f"Hello, {username}!")

tab1, tab2 = st.tabs(["🩺 Consult", "πŸ“Š Reports"])

with tab1:
    query = st.text_area("Describe your symptoms or ask a clinical question:", height=100)

    if st.button("Ask Gemini"):
        CHAT_COUNT.inc()
        with st.spinner("πŸ€– Consulting Gemini..."):
            response = chat_with_gemini(username, query)
            logger.info(f"[Chat] user={username} prompt={query!r}")
        st.markdown(f"**AI Response:** {response}")
        ChatRepo().save(user=username, prompt=query, response=response)

        with st.expander("πŸ”Ž UMLS Concept Lookup"):
            umls_results = lookup_umls(query)
            st.write(umls_results or "No concepts found in UMLS.")

        with st.expander("πŸ”¬ BioPortal Concept Lookup"):
            bio_results = lookup_bioportal(query)
            st.write(bio_results or "No matches found in BioPortal.")

    if st.button("🧬 Quantum Optimize Care Plan"):
        OPTIMIZE_COUNT.inc()
        with st.spinner("βš›οΈ Running quantum-inspired optimizer..."):
            plan = optimize_treatment(query)
            logger.info(f"[Optimize] user={username} plan={plan}")
        st.markdown("### Optimized Treatment Plan")
        st.json(plan)

with tab2:
    st.header("Generate PDF Report of Recent Chats")
    if st.button("Download Last 5 Chats"):
        recent = ChatRepo().get_recent(user=username, limit=5)
        from services.pdf_report import generate_pdf
        pdf_path = generate_pdf({"Recent Chats": recent})
        with open(pdf_path, "rb") as f:
            st.download_button("Download PDF", f, file_name=pdf_path)

# ──────────────────────────────────────────────────────────────────────────────
st.markdown("---")
st.caption("Powered by Gemini LLM β€’ UMLS/BioPortal β€’ Quantum-inspired optimization")