File size: 3,270 Bytes
6145bc0
64f8a92
bea13ba
64f8a92
 
 
864b488
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0a2437f
864b488
64f8a92
bea13ba
0a2437f
 
bea13ba
0a2437f
 
bea13ba
64f8a92
 
0a2437f
864b488
0a2437f
 
 
 
 
 
 
864b488
64f8a92
0a2437f
 
 
 
bea13ba
 
64f8a92
 
bea13ba
864b488
64f8a92
bea13ba
864b488
0a2437f
bea13ba
0a2437f
bea13ba
 
 
 
64f8a92
0a2437f
 
bea13ba
64f8a92
 
 
bea13ba
 
 
64f8a92
 
864b488
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
import streamlit as st

# 1) Ensure DB tables exist
from models.db import init_db
init_db()

# β€”β€”β€”β€”β€” First-Run Signup Flow β€”β€”β€”β€”β€”
from repositories.user_repo import UserRepo
from config.settings import settings

repo = UserRepo(settings.database_url)
if not repo.get_all_users():
    st.title("πŸš€ Welcome to Quantum Healthcare AI")
    st.warning("No users exist yet. Please create the first admin account:")
    new_user = st.text_input("Username")
    new_name = st.text_input("Full name")
    new_pw   = st.text_input("Password", type="password")
    if st.button("Create Admin User"):
        if new_user and new_name and new_pw:
            repo.add_user(new_user, new_name, new_pw)
            st.success(f"Admin `{new_user}` created! Please refresh to log in.")
        else:
            st.error("All fields are required.")
    # Stop here until admin is created
    st.stop()
# β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”

# 2) Authentication (after at least one user exists)
from services.auth import authenticator, require_login
username = require_login()

# 3) Core AI + Clinical NLP + Quantum
from agent.gemini_agent import chat_with_gemini
from clinical_nlp.umls_bioportal import lookup_umls, lookup_bioportal
from quantum.optimizer import optimize_treatment
from repositories.chat_repo import ChatRepo

# 4) Monitoring & Logging
from services.logger import logger
from services.metrics import CHAT_COUNT, OPTIMIZE_COUNT

# === UI Setup ===
st.set_page_config(page_title="Quantum Health AI", layout="wide")
st.image("assets/logo.png", width=64)
st.title(f"Welcome, {username}!")

tab1, tab2 = st.tabs(["🩺 Consult", "πŸ“Š Reports"])

with tab1:
    query = st.text_area("Describe symptoms or ask a medical question:", height=100)

    if st.button("Ask Gemini"):
        CHAT_COUNT.inc()
        with st.spinner("Consulting AI..."):
            response = chat_with_gemini(username, query)
            logger.info(f"[Chat] user={username} prompt={query}")
        st.markdown(f"**AI Response:** {response}")
        ChatRepo().save(user=username, prompt=query, response=response)

        with st.expander("πŸ”Ž UMLS Concept Lookup"):
            st.write(lookup_umls(query) or "No UMLS concepts found.")

        with st.expander("πŸ”¬ BioPortal Concept Lookup"):
            st.write(lookup_bioportal(query) or "No BioPortal matches found.")

    if st.button("Quantum Optimize Care Plan"):
        OPTIMIZE_COUNT.inc()
        with st.spinner("Running quantum-inspired optimizer..."):
            plan = optimize_treatment(query)
            logger.info(f"[Optimize] user={username} plan={plan}")
        st.markdown("### 🧬 Optimized Treatment Plan")
        st.json(plan)

with tab2:
    st.header("Generate PDF Report of Recent Chats")
    if st.button("Download Last 5 Chats"):
        recent = ChatRepo().get_recent(user=username, limit=5)
        from services.pdf_report import generate_pdf
        pdf_path = generate_pdf({"Recent Chats": recent})
        with open(pdf_path, "rb") as f:
            st.download_button("Download PDF", f, file_name=pdf_path)

st.markdown("---")
st.caption("Powered by Gemini LLM β€’ UMLS/BioPortal β€’ Quantum-inspired optimization")