Update agent.py
Browse files
agent.py
CHANGED
@@ -1,203 +1,191 @@
|
|
1 |
# /home/user/app/agent.py
|
|
|
2 |
from langchain_google_genai import ChatGoogleGenerativeAI
|
3 |
-
from langchain.agents import AgentExecutor, create_structured_chat_agent
|
4 |
-
#
|
5 |
-
# from langchain_google_genai.chat_models import GChatVertexAI # For Vertex AI
|
6 |
-
# from langchain_google_genai import HarmBlockThreshold, HarmCategory # For safety settings
|
7 |
|
8 |
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
|
9 |
from langchain_core.messages import AIMessage, HumanMessage, SystemMessage
|
10 |
-
# from langchain_community.chat_message_histories import ChatMessageHistory # Not used directly here
|
11 |
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
|
|
|
|
16 |
from config.settings import settings
|
17 |
from services.logger import app_logger
|
18 |
|
19 |
# --- Initialize LLM (Gemini) ---
|
20 |
-
# Ensure GOOGLE_API_KEY is set in your environment, or pass it directly:
|
21 |
-
# api_key=settings.GEMINI_API_KEY (if settings.GEMINI_API_KEY maps to GOOGLE_API_KEY)
|
22 |
try:
|
|
|
|
|
|
|
|
|
|
|
23 |
llm = ChatGoogleGenerativeAI(
|
24 |
-
model="gemini-
|
|
|
25 |
temperature=0.3,
|
26 |
-
# google_api_key=settings.GEMINI_API_KEY, # Explicitly pass if
|
27 |
-
|
28 |
-
# safety_settings={ #
|
29 |
-
# HarmCategory.
|
30 |
-
# HarmCategory.
|
31 |
# }
|
32 |
)
|
33 |
-
app_logger.info("ChatGoogleGenerativeAI (
|
34 |
except Exception as e:
|
35 |
app_logger.error(f"Failed to initialize ChatGoogleGenerativeAI: {e}", exc_info=True)
|
36 |
-
|
37 |
-
raise ValueError(f"Gemini LLM initialization failed: {e}. Check API key and configurations.")
|
38 |
|
39 |
|
40 |
# --- Initialize Tools ---
|
41 |
-
# Ensure
|
|
|
42 |
tools = [
|
43 |
UMLSLookupTool(),
|
44 |
BioPortalLookupTool(),
|
45 |
QuantumTreatmentOptimizerTool(),
|
|
|
|
|
|
|
|
|
46 |
]
|
47 |
app_logger.info(f"Tools initialized: {[tool.name for tool in tools]}")
|
48 |
|
49 |
|
50 |
-
# --- Agent Prompt (Adapted for
|
51 |
-
# This prompt
|
52 |
-
#
|
53 |
-
#
|
54 |
-
#
|
55 |
-
#
|
56 |
-
#
|
57 |
-
|
58 |
-
#
|
59 |
-
#
|
60 |
-
#
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
"
|
77 |
-
"
|
78 |
-
"
|
79 |
-
"
|
80 |
-
"
|
81 |
-
"
|
82 |
-
"
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
"
|
88 |
-
"```\n\n"
|
89 |
-
"If you use a tool, the system will give you the observation from the tool. "
|
90 |
-
"Then you must respond to the human based on this observation and your knowledge. "
|
91 |
-
"If the human asks a question that doesn't require a tool, answer directly. "
|
92 |
-
"When asked about treatment optimization for a specific patient based on provided context, "
|
93 |
-
"you MUST use the 'quantum_treatment_optimizer' tool. "
|
94 |
-
"For general medical knowledge, you can answer directly or use UMLS/BioPortal. "
|
95 |
-
"Always cite the tool you used if its output is part of your final response. "
|
96 |
-
"Do not provide medical advice directly for specific patient cases without using the 'quantum_treatment_optimizer' tool. "
|
97 |
-
"Patient Context for this session (if provided by the user earlier): {patient_context}\n" # Added patient_context
|
98 |
"Begin!\n\n"
|
99 |
"Previous conversation history:\n"
|
100 |
"{chat_history}\n\n"
|
101 |
"New human question: {input}\n"
|
102 |
-
"{agent_scratchpad}"
|
103 |
)
|
104 |
|
105 |
prompt = ChatPromptTemplate.from_messages([
|
106 |
-
("system",
|
107 |
-
#
|
108 |
-
#
|
109 |
-
|
|
|
110 |
])
|
111 |
-
|
112 |
-
# or passed through `agent_scratchpad` based on how it formats things.
|
113 |
-
# The prompt structure might need adjustment based on the exact agent behavior.
|
114 |
-
# Often, for these agents, you pass "input" and "chat_history" to invoke, and the prompt template variables
|
115 |
-
# are {input}, {chat_history}, {agent_scratchpad}, {tools}, {tool_names}.
|
116 |
-
|
117 |
-
# For create_structured_chat_agent, the prompt should guide the LLM to produce
|
118 |
-
# either a final answer or a JSON blob for a tool call.
|
119 |
-
# The input variables for the prompt are typically 'input', 'chat_history', 'agent_scratchpad', 'tools', 'tool_names'.
|
120 |
-
# Our SYSTEM_PROMPT_TEXT includes these implicitly or explicitly.
|
121 |
-
|
122 |
|
123 |
# --- Create Agent ---
|
124 |
try:
|
125 |
-
# `create_structured_chat_agent` is designed for LLMs that can follow complex instructions
|
126 |
-
# and output structured data (like JSON for tool calls) when prompted to do so.
|
127 |
agent = create_structured_chat_agent(llm=llm, tools=tools, prompt=prompt)
|
128 |
-
app_logger.info("Structured chat agent created successfully with Gemini.")
|
129 |
except Exception as e:
|
130 |
app_logger.error(f"Failed to create structured chat agent: {e}", exc_info=True)
|
131 |
-
raise ValueError(f"
|
132 |
|
133 |
|
134 |
# --- Create Agent Executor ---
|
135 |
agent_executor = AgentExecutor(
|
136 |
agent=agent,
|
137 |
tools=tools,
|
138 |
-
verbose=True,
|
139 |
-
handle_parsing_errors=True, #
|
140 |
-
#
|
141 |
-
#
|
142 |
-
|
143 |
)
|
144 |
-
app_logger.info("AgentExecutor created successfully.")
|
145 |
|
146 |
|
147 |
# --- Getter Function for Streamlit App ---
|
148 |
def get_agent_executor():
|
149 |
"""Returns the configured agent executor for Gemini."""
|
150 |
-
#
|
151 |
-
#
|
152 |
-
|
153 |
-
|
154 |
-
|
|
|
|
|
155 |
return agent_executor
|
156 |
|
157 |
-
# --- Example Usage (for local testing) ---
|
158 |
-
import os # For checking GOOGLE_API_KEY from environment
|
159 |
-
|
160 |
if __name__ == "__main__":
|
161 |
-
if not (settings.GEMINI_API_KEY or os.
|
162 |
-
print("Please set your GOOGLE_API_KEY
|
163 |
else:
|
164 |
-
print("Gemini Agent Test Console
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
165 |
executor = get_agent_executor()
|
166 |
-
|
167 |
-
# For structured chat agents, chat_history is often passed in the invoke call.
|
168 |
-
# The agent prompt includes {chat_history}.
|
169 |
-
current_chat_history = [] # List of HumanMessage, AIMessage
|
170 |
-
|
171 |
-
# Initial patient context (simulated for testing)
|
172 |
-
patient_context_for_test = {
|
173 |
-
"age": 35,
|
174 |
-
"gender": "Male",
|
175 |
-
"key_medical_history": "Type 2 Diabetes, Hypertension",
|
176 |
-
"current_medications": "Metformin, Lisinopril"
|
177 |
-
}
|
178 |
-
context_summary_parts_test = [f"{k.replace('_', ' ').title()}: {v}" for k, v in patient_context_for_test.items() if v]
|
179 |
-
patient_context_str_test = "; ".join(context_summary_parts_test) if context_summary_parts_test else "None provided."
|
180 |
|
|
|
|
|
|
|
|
|
|
|
181 |
|
182 |
while True:
|
183 |
-
|
184 |
-
if
|
|
|
185 |
break
|
186 |
|
187 |
try:
|
|
|
188 |
response = executor.invoke({
|
189 |
-
"input":
|
190 |
-
"chat_history":
|
191 |
-
"patient_context":
|
192 |
-
# `tools` and `tool_names` are usually handled by the agent constructor
|
193 |
})
|
194 |
|
195 |
-
|
196 |
-
print(f"Agent: {
|
197 |
|
198 |
-
|
199 |
-
|
200 |
|
201 |
except Exception as e:
|
202 |
-
print(f"Error
|
203 |
-
app_logger.error(f"Error in __main__ agent test: {e}", exc_info=True)
|
|
|
1 |
# /home/user/app/agent.py
|
2 |
+
import os
|
3 |
from langchain_google_genai import ChatGoogleGenerativeAI
|
4 |
+
from langchain.agents import AgentExecutor, create_structured_chat_agent
|
5 |
+
# from langchain_google_genai import HarmBlockThreshold, HarmCategory # Optional for safety
|
|
|
|
|
6 |
|
7 |
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
|
8 |
from langchain_core.messages import AIMessage, HumanMessage, SystemMessage
|
|
|
9 |
|
10 |
+
# --- Import your defined tools ---
|
11 |
+
from tools.bioportal_tool import BioPortalLookupTool, BioPortalInput
|
12 |
+
from tools.gemini_tool import GeminiTool, GeminiInput # For using Gemini as a specific sub-task tool
|
13 |
+
from tools.umls_tool import UMLSLookupTool, UMLSInput
|
14 |
+
from tools.quantum_treatment_optimizer_tool import QuantumTreatmentOptimizerTool, QuantumOptimizerInput # Assuming this path and model name
|
15 |
+
|
16 |
from config.settings import settings
|
17 |
from services.logger import app_logger
|
18 |
|
19 |
# --- Initialize LLM (Gemini) ---
|
|
|
|
|
20 |
try:
|
21 |
+
# Ensure GOOGLE_API_KEY is set in your environment (HuggingFace Secrets)
|
22 |
+
# or settings.GEMINI_API_KEY correctly maps to it.
|
23 |
+
if not (settings.GEMINI_API_KEY or os.getenv("GOOGLE_API_KEY")):
|
24 |
+
raise ValueError("GOOGLE_API_KEY (for Gemini) not found in settings or environment.")
|
25 |
+
|
26 |
llm = ChatGoogleGenerativeAI(
|
27 |
+
model="gemini-1.5-pro-latest", # Using a more capable Gemini model if available
|
28 |
+
# model="gemini-pro", # Fallback if 1.5-pro is not yet available or preferred
|
29 |
temperature=0.3,
|
30 |
+
# google_api_key=settings.GEMINI_API_KEY, # Explicitly pass if GOOGLE_API_KEY env var isn't set
|
31 |
+
convert_system_message_to_human=True, # Can be helpful for some models
|
32 |
+
# safety_settings={ # Example safety settings
|
33 |
+
# HarmCategory.HARM_CATEGORY_DANGEROUS_CONTENT: HarmBlockThreshold.BLOCK_NONE,
|
34 |
+
# HarmCategory.HARM_CATEGORY_HARASSMENT: HarmBlockThreshold.BLOCK_MEDIUM_AND_ABOVE,
|
35 |
# }
|
36 |
)
|
37 |
+
app_logger.info(f"ChatGoogleGenerativeAI ({llm.model}) initialized successfully.")
|
38 |
except Exception as e:
|
39 |
app_logger.error(f"Failed to initialize ChatGoogleGenerativeAI: {e}", exc_info=True)
|
40 |
+
raise ValueError(f"Gemini LLM initialization failed: {e}. Check API key and configurations in HF Secrets.")
|
|
|
41 |
|
42 |
|
43 |
# --- Initialize Tools ---
|
44 |
+
# Ensure each tool's description is clear and guides the LLM on when and how to use it.
|
45 |
+
# Also, ensure their args_schema is correctly defined.
|
46 |
tools = [
|
47 |
UMLSLookupTool(),
|
48 |
BioPortalLookupTool(),
|
49 |
QuantumTreatmentOptimizerTool(),
|
50 |
+
# GeminiTool(), # Consider if this is needed. The main LLM is already Gemini.
|
51 |
+
# Useful if this tool performs a very specific, different task with Gemini,
|
52 |
+
# or uses a different Gemini model (e.g., for vision if main is text).
|
53 |
+
# If it's just for general queries, the main agent LLM can handle it.
|
54 |
]
|
55 |
app_logger.info(f"Tools initialized: {[tool.name for tool in tools]}")
|
56 |
|
57 |
|
58 |
+
# --- Agent Prompt (Adapted for Structured Chat with Gemini and your tools) ---
|
59 |
+
# This prompt guides the LLM to:
|
60 |
+
# 1. Understand its role and capabilities.
|
61 |
+
# 2. Know which tools are available and their purpose (from {tools}).
|
62 |
+
# 3. Format tool invocations as a JSON blob with "action" and "action_input".
|
63 |
+
# - "action_input" should be a string for simple tools (UMLSInput, GeminiInput).
|
64 |
+
# - "action_input" should be a dictionary for tools with multiple args (BioPortalInput, QuantumOptimizerInput).
|
65 |
+
# 4. Use the provided {patient_context}.
|
66 |
+
# 5. Refer to {chat_history}.
|
67 |
+
# 6. Process the new {input}.
|
68 |
+
# 7. Use {agent_scratchpad} for its internal monologue/tool results.
|
69 |
+
|
70 |
+
SYSTEM_PROMPT_TEMPLATE = (
|
71 |
+
"You are 'Quantum Health Navigator', an advanced AI assistant for healthcare professionals. "
|
72 |
+
"Your primary goal is to provide accurate information and insights based on user queries and available tools. "
|
73 |
+
"You must adhere to the following guidelines:\n"
|
74 |
+
"1. Disclaimers: Always remind the user that you are an AI, not a human medical professional, and your information "
|
75 |
+
"is for support, not a substitute for clinical judgment. Do not provide direct medical advice for specific patient cases "
|
76 |
+
"unless it's the direct output of a specialized tool like 'quantum_treatment_optimizer'.\n"
|
77 |
+
"2. Patient Context: The user may provide patient context at the start of the session. This context is available as: {patient_context}. "
|
78 |
+
"You MUST consider this context when it's relevant to the query, especially for the 'quantum_treatment_optimizer' tool.\n"
|
79 |
+
"3. Tool Usage: You have access to the following tools:\n{tools}\n"
|
80 |
+
" To use a tool, respond with a JSON markdown code block like this:\n"
|
81 |
+
" ```json\n"
|
82 |
+
" {{\n"
|
83 |
+
' "action": "tool_name",\n'
|
84 |
+
' "action_input": "query string for the tool" OR {{"arg1": "value1", "arg2": "value2", ...}} \n'
|
85 |
+
" }}\n"
|
86 |
+
" ```\n"
|
87 |
+
" - For `umls_lookup` and `google_gemini_chat`, `action_input` is a single string (the 'term' or 'query').\n"
|
88 |
+
" - For `bioportal_lookup`, `action_input` is a dictionary like `{{\"term\": \"search_term\", \"ontology\": \"ONTOLOGY_CODE\"}}`. If ontology is not specified by user, you can default to SNOMEDCT or ask.\n"
|
89 |
+
" - For `quantum_treatment_optimizer`, `action_input` is a dictionary like `{{\"patient_data\": {{...patient details...}}, \"current_treatments\": [\"med1\"], \"conditions\": [\"cond1\"]}}`. You MUST populate 'patient_data' using the overall {patient_context} if available and relevant.\n"
|
90 |
+
"4. Responding to User: After using a tool, you will receive an observation. Use this observation and your knowledge to formulate a comprehensive answer. Cite the tool if you used one (e.g., 'According to UMLS Lookup...').\n"
|
91 |
+
"5. Specific Tool Guidance:\n"
|
92 |
+
" - If asked about treatment optimization for a specific patient (especially if context is provided), you MUST use the `quantum_treatment_optimizer` tool.\n"
|
93 |
+
" - For definitions, codes, or general medical concepts, `umls_lookup` or `bioportal_lookup` are appropriate.\n"
|
94 |
+
" - If the query is very general, complex, or creative beyond simple lookups, you might consider using `google_gemini_chat` (if enabled) or answering directly if confident.\n"
|
95 |
+
"6. Conversation Flow: Refer to the `Previous conversation history` to maintain context.\n\n"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
"Begin!\n\n"
|
97 |
"Previous conversation history:\n"
|
98 |
"{chat_history}\n\n"
|
99 |
"New human question: {input}\n"
|
100 |
+
"{agent_scratchpad}"
|
101 |
)
|
102 |
|
103 |
prompt = ChatPromptTemplate.from_messages([
|
104 |
+
("system", SYSTEM_PROMPT_TEMPLATE),
|
105 |
+
# For structured chat agent, HumanMessage/AIMessage sequence is often handled by MessagesPlaceholder("agent_scratchpad")
|
106 |
+
# or by how the agent formats history into the main prompt.
|
107 |
+
# The key is that the {chat_history} and {input} placeholders are in the system prompt.
|
108 |
+
MessagesPlaceholder(variable_name="agent_scratchpad"),
|
109 |
])
|
110 |
+
app_logger.info("Agent prompt template created.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
111 |
|
112 |
# --- Create Agent ---
|
113 |
try:
|
|
|
|
|
114 |
agent = create_structured_chat_agent(llm=llm, tools=tools, prompt=prompt)
|
115 |
+
app_logger.info("Structured chat agent created successfully with Gemini LLM.")
|
116 |
except Exception as e:
|
117 |
app_logger.error(f"Failed to create structured chat agent: {e}", exc_info=True)
|
118 |
+
raise ValueError(f"Gemini agent creation failed: {e}")
|
119 |
|
120 |
|
121 |
# --- Create Agent Executor ---
|
122 |
agent_executor = AgentExecutor(
|
123 |
agent=agent,
|
124 |
tools=tools,
|
125 |
+
verbose=True, # Set to True for debugging, False for production
|
126 |
+
handle_parsing_errors=True, # Crucial for LLM-generated JSON for tool calls
|
127 |
+
max_iterations=10, # Increased slightly for potentially complex tool interactions
|
128 |
+
# return_intermediate_steps=True, # Enable if you need to see thoughts/tool calls in the response object
|
129 |
+
early_stopping_method="generate", # Stop if LLM generates a stop token or a final answer
|
130 |
)
|
131 |
+
app_logger.info("AgentExecutor with Gemini agent created successfully.")
|
132 |
|
133 |
|
134 |
# --- Getter Function for Streamlit App ---
|
135 |
def get_agent_executor():
|
136 |
"""Returns the configured agent executor for Gemini."""
|
137 |
+
# Initialization happens above when the module is loaded.
|
138 |
+
# This function just returns the already created executor.
|
139 |
+
# A check for API key is good practice, though it would have failed earlier if not set.
|
140 |
+
if not (settings.GEMINI_API_KEY or os.getenv("GOOGLE_API_KEY")):
|
141 |
+
# This log might be redundant if LLM init failed, but good as a sanity check here.
|
142 |
+
app_logger.error("CRITICAL: GOOGLE_API_KEY (for Gemini) is not available at get_agent_executor call.")
|
143 |
+
raise ValueError("Google API Key for Gemini not configured. Agent cannot function.")
|
144 |
return agent_executor
|
145 |
|
146 |
+
# --- Example Usage (for local testing of this agent.py file) ---
|
|
|
|
|
147 |
if __name__ == "__main__":
|
148 |
+
if not (settings.GEMINI_API_KEY or os.getenv("GOOGLE_API_KEY")):
|
149 |
+
print("Please set your GOOGLE_API_KEY in .env file or as an environment variable.")
|
150 |
else:
|
151 |
+
print("\nQuantum Health Navigator (Gemini Agent Test Console)")
|
152 |
+
print("Type 'exit' or 'quit' to stop.")
|
153 |
+
print("Example queries:")
|
154 |
+
print(" - What is hypertension?")
|
155 |
+
print(" - Lookup 'myocardial infarction' in UMLS.")
|
156 |
+
print(" - Search for 'diabetes mellitus type 2' in BioPortal using SNOMEDCT ontology.")
|
157 |
+
print(" - Optimize treatment for a patient (context will be simulated).")
|
158 |
+
print("-" * 30)
|
159 |
+
|
160 |
executor = get_agent_executor()
|
161 |
+
current_chat_history_for_test = [] # List of HumanMessage, AIMessage
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
162 |
|
163 |
+
# Simulated patient context for testing the {patient_context} variable
|
164 |
+
test_patient_context_summary = (
|
165 |
+
"Age: 45; Gender: Male; Chief Complaint: Intermittent chest pain; "
|
166 |
+
"Key Medical History: Hyperlipidemia; Current Medications: Atorvastatin 20mg."
|
167 |
+
)
|
168 |
|
169 |
while True:
|
170 |
+
user_input_str = input("\n👤 You: ")
|
171 |
+
if user_input_str.lower() in ["exit", "quit"]:
|
172 |
+
print("Exiting test console.")
|
173 |
break
|
174 |
|
175 |
try:
|
176 |
+
app_logger.info(f"__main__ test: Invoking agent with input: '{user_input_str}'")
|
177 |
response = executor.invoke({
|
178 |
+
"input": user_input_str,
|
179 |
+
"chat_history": current_chat_history_for_test,
|
180 |
+
"patient_context": test_patient_context_summary # Passing the context
|
|
|
181 |
})
|
182 |
|
183 |
+
ai_output_str = response.get('output', "Agent did not produce an output.")
|
184 |
+
print(f"🤖 Agent: {ai_output_str}")
|
185 |
|
186 |
+
current_chat_history_for_test.append(HumanMessage(content=user_input_str))
|
187 |
+
current_chat_history_for_test.append(AIMessage(content=ai_output_str))
|
188 |
|
189 |
except Exception as e:
|
190 |
+
print(f"⚠️ Error during agent invocation: {e}")
|
191 |
+
app_logger.error(f"Error in __main__ agent test invocation: {e}", exc_info=True)
|